These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 20526839)
41. Identification of new wheat common bunt pathotypes (Tilletia laevis Kuhn.). Dariaee A; Biglar HG; Haghparast R Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1093-101. PubMed ID: 17390864 [TBL] [Abstract][Full Text] [Related]
42. Development of PCR assay based on ITS2 rDNA polymorphism for the detection and differentiation of Fusarium sporotrichioides. Kulik T; Fordoński G; Pszczółkowska A; Płodzień K; Łapiński M FEMS Microbiol Lett; 2004 Oct; 239(1):181-6. PubMed ID: 15451117 [TBL] [Abstract][Full Text] [Related]
43. Characterization of Rhizosphere Microbial Communities for Disease Incidence and Optimized Concentration of Difenoconazole Fungicide for Controlling of Wheat Dwarf Bunt. Jia H; Muhae-Ud-Din G; Zhang H; Zong Q; Zhao S; Guo Q; Chen W; Gao L Front Microbiol; 2022; 13():853176. PubMed ID: 35615520 [TBL] [Abstract][Full Text] [Related]
44. Development of conventional and nested PCR assays for the detection of Ophiocordyceps sinensis. Jin GS; Wang XL; Li Y; Wang WJ; Yang RH; Ren SY; Yao YJ J Basic Microbiol; 2013 Apr; 53(4):340-7. PubMed ID: 22915189 [TBL] [Abstract][Full Text] [Related]
45. Basal expression studies of cystatins during specific growth stages of wheat spikes for defining their possible role in differential and stage dependent immunity against Karnal bunt (Tilletia indica). Purwar S; Marla SS; Singh US; Kumar A Mol Biol Rep; 2010 Mar; 37(3):1377-89. PubMed ID: 19347606 [TBL] [Abstract][Full Text] [Related]
46. Development of a SCAR marker for detection of Bipolaris sorokiniana causing spot blotch of wheat. Aggarwal R; Gupta S; Banerjee S; Singh VB Can J Microbiol; 2011 Nov; 57(11):934-42. PubMed ID: 22017748 [TBL] [Abstract][Full Text] [Related]
47. Development of SCAR markers and PCR assays for single or simultaneous species-specific detection of Phytophthora nicotianae and Pythium helicoides in ebb-and-flow irrigated kalanchoe. Ahonsi MO; Ling Y; Kageyama K J Microbiol Methods; 2010 Nov; 83(2):260-5. PubMed ID: 20826191 [TBL] [Abstract][Full Text] [Related]
48. Expression analysis of genes involved in teliospores germination of Tilletia indica inciting Karnal bunt of wheat. Manakkatt HM; Gurjar MS; Saharan MS; Aggarwal R Mol Biol Rep; 2024 Jun; 51(1):726. PubMed ID: 38856802 [TBL] [Abstract][Full Text] [Related]
49. Genetic mapping of common bunt resistance and plant height QTL in wheat. Singh A; Knox RE; DePauw RM; Singh AK; Cuthbert RD; Kumar S; Campbell HL Theor Appl Genet; 2016 Feb; 129(2):243-56. PubMed ID: 26520114 [TBL] [Abstract][Full Text] [Related]
50. A molecular protocol using quenched FRET probes for the quarantine surveillance of Tilletia indica, the causal agent of Karnal bunt of wheat. Tan MK; Murray GM Mycol Res; 2006 Feb; 110(Pt 2):203-10. PubMed ID: 16388942 [TBL] [Abstract][Full Text] [Related]
51. Kernel Transcriptome Profiles of Susceptible Wheat Genotypes in Response to Wheat Dwarf Bunt. Su S; Zhang Z; Shen T; Chen J; Liu Q Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139108 [TBL] [Abstract][Full Text] [Related]
52. Characterization of a Small Cysteine-Rich Secreted Effector, TcSCP_9014, in Du Z; Weng H; Jia H; Zhang B; Wu B; Chen W; Liu T; Gao L Plants (Basel); 2024 May; 13(11):. PubMed ID: 38891331 [No Abstract] [Full Text] [Related]
54. Development of specific sequence-characterized amplified region markers for detecting Histoplasma capsulatum in clinical and environmental samples. Frías De León MG; Arenas López G; Taylor ML; Acosta Altamirano G; Reyes-Montes Mdel R J Clin Microbiol; 2012 Mar; 50(3):673-9. PubMed ID: 22189121 [TBL] [Abstract][Full Text] [Related]
55. Use of inter-simple sequence repeat markers to develop strain-specific SCAR markers for Flammulina velutipes. Su H; Wang L; Liu L; Chi X; Zhang Y J Appl Genet; 2008; 49(3):233-5. PubMed ID: 18670059 [TBL] [Abstract][Full Text] [Related]
56. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Zhao J; Wang L; Wang Z; Chen X; Zhang H; Yao J; Zhan G; Chen W; Huang L; Kang Z Phytopathology; 2013 Sep; 103(9):927-34. PubMed ID: 23514262 [TBL] [Abstract][Full Text] [Related]
57. DWARF BUNT: politics, identification, and biology. Mathre DE Annu Rev Phytopathol; 1996; 34():67-85. PubMed ID: 15012535 [TBL] [Abstract][Full Text] [Related]
58. Development and Application of a New PCR Method for Detection of Blumeria graminis f. sp. tritici. Kuzdraliński A; Szczerba H; Kot A; Ostrowska A; Nowak M; Muszyńska M J Mol Microbiol Biotechnol; 2018; 28(3):137-146. PubMed ID: 30522117 [TBL] [Abstract][Full Text] [Related]
59. Microsatellite Genotyping of the Wheat Yellow Rust Pathogen Puccinia striiformis. Ali S; Khan MR; Gautier A; Swati ZA; Walter S Methods Mol Biol; 2017; 1659():59-70. PubMed ID: 28856641 [TBL] [Abstract][Full Text] [Related]
60. Detection of Phanerochaete chrysosporium in soil by PCR and restriction enzyme analysis. Johnston CG; Aust SD Appl Environ Microbiol; 1994 Jul; 60(7):2350-4. PubMed ID: 8074515 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]