These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 20526917)

  • 1. Fibre bundle element method of determining physiological cross-sectional area from three-dimensional computer muscle models created from digitised fibre bundle data.
    Ravichandiran K; Ravichandiran M; Oliver ML; Singh KS; McKee NH; Agur AM
    Comput Methods Biomech Biomed Engin; 2010 Dec; 13(6):741-8. PubMed ID: 20526917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining physiological cross-sectional area of extensor carpi radialis longus and brevis as a whole and by regions using 3D computer muscle models created from digitized fiber bundle data.
    Ravichandiran K; Ravichandiran M; Oliver ML; Singh KS; McKee NH; Agur AM
    Comput Methods Programs Biomed; 2009 Sep; 95(3):203-12. PubMed ID: 19395118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust estimation of physiological cross-sectional area and geometric reconstruction for human skeletal muscle.
    Lee D; Ravichandiran K; Jackson K; Fiume E; Agur A
    J Biomech; 2012 May; 45(8):1507-13. PubMed ID: 22406468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in triceps surae muscle architecture with sarcopenia.
    Morse CI; Thom JM; Birch KM; Narici MV
    Acta Physiol Scand; 2005 Mar; 183(3):291-8. PubMed ID: 15743389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling masticatory muscle force in finite element analysis: sensitivity analysis using principal coordinates analysis.
    Ross CF; Patel BA; Slice DE; Strait DS; Dechow PC; Richmond BG; Spencer MA
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):288-99. PubMed ID: 15747351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional study of the musculotendinous and neurovascular architecture of the gracilis muscle: application to functional muscle transfer.
    Fattah AY; Ravichandiran K; Zuker RM; Agur AM
    J Plast Reconstr Aesthet Surg; 2013 Sep; 66(9):1230-7. PubMed ID: 23773930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of cadaveric data for muscle physiological cross-sectional area ratios: a comparative study of cadaveric and in-vivo data in human thigh muscles.
    Cutts A; Seedhom BB
    Clin Biomech (Bristol, Avon); 1993 May; 8(3):156-62. PubMed ID: 23915944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of muscle force estimates to variations in muscle-tendon properties.
    Redl C; Gfoehler M; Pandy MG
    Hum Mov Sci; 2007 Apr; 26(2):306-19. PubMed ID: 17343945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density and hydration of fresh and fixed human skeletal muscle.
    Ward SR; Lieber RL
    J Biomech; 2005 Nov; 38(11):2317-20. PubMed ID: 16154420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomically grounded estimation of hindlimb muscle sizes in Archosauria.
    Cuff AR; Wiseman ALA; Bishop PJ; Michel KB; Gaignet R; Hutchinson JR
    J Anat; 2023 Feb; 242(2):289-311. PubMed ID: 36206401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo.
    Albracht K; Arampatzis A; Baltzopoulos V
    J Biomech; 2008 Jul; 41(10):2211-8. PubMed ID: 18555257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of 20 days of bed rest on physiological cross-sectional area of human thigh and leg muscles evaluated by magnetic resonance imaging.
    Akima H; Kuno S; Suzuki Y; Gunji A; Fukunaga T
    J Gravit Physiol; 1997 Jan; 4(1):S15-21. PubMed ID: 11541171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early structural adaptations to unloading in the human calf muscles.
    Seynnes OR; Maganaris CN; de Boer MD; di Prampero PE; Narici MV
    Acta Physiol (Oxf); 2008 Jul; 193(3):265-74. PubMed ID: 18266998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability in muscle fibre areas in whole human quadriceps muscle: effects of increasing age.
    Lexell J; Taylor CC
    J Anat; 1991 Feb; 174():239-49. PubMed ID: 2032938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utility for production of massaged products of selected wild boar muscles originating from wetlands and an arable area.
    Zochowska-Kujawska J; Lachowicz K; Sobczak M; Bienkiewicz G
    Meat Sci; 2010 Jul; 85(3):461-6. PubMed ID: 20416815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architectural properties of distal forelimb muscles in horses, Equus caballus.
    Brown NA; Kawcak CE; McIlwraith CW; Pandy MG
    J Morphol; 2003 Oct; 258(1):106-14. PubMed ID: 12905538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into skeletal muscle fibre types in the dog with particular focus towards hybrid myosin phenotypes.
    Acevedo LM; Rivero JL
    Cell Tissue Res; 2006 Feb; 323(2):283-303. PubMed ID: 16163488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proprioceptive neuromuscular facilitation training induced alterations in muscle fibre type and cross sectional area.
    Kofotolis N; Vrabas IS; Vamvakoudis E; Papanikolaou A; Mandroukas K
    Br J Sports Med; 2005 Mar; 39(3):e11. PubMed ID: 15728679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of measurement technique and sampling on estimates of skeletal muscle fibre architecture.
    Taylor AB; Terhune CE; Ross CF; Vinyard CJ
    Anat Rec (Hoboken); 2024 Feb; ():. PubMed ID: 38406878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.