BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20527744)

  • 1. Asymmetric synthesis of D-ribo-phytosphingosine from 1-tetradecyne and (4-methoxyphenoxy)acetaldehyde.
    Liu Z; Byun HS; Bittman R
    J Org Chem; 2010 Jul; 75(13):4356-64. PubMed ID: 20527744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of anti-vicinal amino alcohols: asymmetric synthesis of D-erythro-sphinganine, (+)-spisulosine, and D-ribo-phytosphingosine.
    Calder ED; Zaed AM; Sutherland A
    J Org Chem; 2013 Jul; 78(14):7223-33. PubMed ID: 23795558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile synthesis of αGalCer and its analogues exploiting a cyclic carbonate as phytosphingosine 3,4-diol protecting group.
    Panza L; Compostella F; Imperio D
    Carbohydr Res; 2019 Jan; 472():50-57. PubMed ID: 30471510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dihydroxylation of 2-vinylaziridine: efficient synthesis of D-ribo-phytosphingosine.
    Yoon HJ; Kim YW; Lee BK; Lee WK; Kim Y; Ha HJ
    Chem Commun (Camb); 2007 Jan; (1):79-81. PubMed ID: 17279267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient synthesis of D-erythro-sphingosine and D-erythro-azidosphingosine from D-ribo-phytosphingosine via a cyclic sulfate intermediate.
    Kim S; Lee S; Lee T; Ko H; Kim D
    J Org Chem; 2006 Oct; 71(22):8661-4. PubMed ID: 17064054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective, high-yielding, and stereospecific total synthesis of D-erythro-(2R,3S)-sphingosine from D-ribo-(2S,3S,4R)-phytosphingosine.
    van den Berg RJ; Korevaar CG; Overkleeft HS; van der Marel GA; van Boom JH
    J Org Chem; 2004 Aug; 69(17):5699-704. PubMed ID: 15307742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First asymmetric synthesis of 6-hydroxy-4-sphingenine-containing ceramides. Use of chiral propargylic alcohols to prepare a lipid found in human skin.
    Chun J; Byun HS; Bittman R
    J Org Chem; 2003 Jan; 68(2):348-54. PubMed ID: 12530859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient high-yield synthesis of D-ribo-phytosphingosine.
    Lombardo M; Capdevila MG; Pasi F; Trombini C
    Org Lett; 2006 Jul; 8(15):3303-5. PubMed ID: 16836391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric catalytic synthesis of the proposed structure of trocheliophorolide B.
    Trost BM; Quintard A
    Org Lett; 2012 Sep; 14(17):4698-700. PubMed ID: 22913543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile synthesis of D-ribo-C(20)-phytosphingosine and its C2 epimer from D-ribose.
    Martinková M; Gonda J; Pomikalová K; Kožíšek J; Kuchár J
    Carbohydr Res; 2011 Sep; 346(13):1728-38. PubMed ID: 21703597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A concomitant allylic azide rearrangement/intramolecular azide-alkyne cycloaddition sequence.
    Vekariya RH; Liu R; Aubé J
    Org Lett; 2014 Apr; 16(7):1844-7. PubMed ID: 24635056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A direct organocatalytic entry to sphingoids: asymmetric synthesis of D-arabino- and L-ribo-phytosphingosine.
    Enders D; Palecek J; Grondal C
    Chem Commun (Camb); 2006 Feb; (6):655-7. PubMed ID: 16446841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric catalytic conjugate addition of acetaldehyde to nitrodienynes/nitroenynes: applications to the syntheses of (+)-α-lycorane and chiral β-alkynyl acids.
    Meng XL; Liu T; Sun ZW; Wang JC; Peng FZ; Shao ZH
    Org Lett; 2014 Jun; 16(11):3044-7. PubMed ID: 24811051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total Syntheses of (R)-Strongylodiols C and D.
    Liu F; Zhong J; Li S; Li M; Wu L; Wang Q; Mao J; Liu S; Zheng B; Wang M; Bian Q
    J Nat Prod; 2016 Jan; 79(1):244-7. PubMed ID: 26735019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regioselective inversion of the hydroxyl group in D-ribo-phytosphingosine via a cyclic sulfate and bis-sulfonate intermediate.
    Lee YM; Baek DJ; Lee S; Kim D; Kim S
    J Org Chem; 2011 Jan; 76(2):408-16. PubMed ID: 21192633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient preparation of isosteric phosphonate analogues of sphingolipids by opening of oxirane and cyclic sulfamidate intermediates with alpha-lithiated alkylphosphonic esters.
    Sun C; Bittman R
    J Org Chem; 2004 Oct; 69(22):7694-9. PubMed ID: 15497998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total synthesis of α-1C-galactosylceramide, an immunostimulatory C-glycosphingolipid, and confirmation of the stereochemistry in the first-generation synthesis.
    Liu Z; Byun HS; Bittman R
    J Org Chem; 2011 Nov; 76(21):8588-98. PubMed ID: 21958232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular azide-alkyne [3 + 2] cycloaddition: versatile route to new heterocyclic structural scaffolds.
    Li R; Jansen DJ; Datta A
    Org Biomol Chem; 2009 May; 7(9):1921-30. PubMed ID: 19590789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective Nickel-Catalyzed Alkyne-Azide Cycloaddition by Dynamic Kinetic Resolution.
    Liu EC; Topczewski JJ
    J Am Chem Soc; 2021 Apr; 143(14):5308-5313. PubMed ID: 33798335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Readily accessible azido-alkyne-functionalized monomers for the synthesis of cyclodextrin analogues using click chemistry.
    Daher G; Seoane G
    Org Biomol Chem; 2022 Feb; 20(8):1690-1698. PubMed ID: 35137757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.