BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20527750)

  • 1. Assembly of fullerene-carbon nanotubes: temperature indicator for photothermal conversion.
    Shen Y; Skirtach AG; Seki T; Yagai S; Li H; Möhwald H; Nakanishi T
    J Am Chem Soc; 2010 Jun; 132(25):8566-8. PubMed ID: 20527750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyarene-functionalized fullerenes in carbon nanotubes: towards controlled geometry of molecular chains.
    Chamberlain TW; Pfeiffer R; Peterlik H; Kuzmany H; Zerbetto F; Melle-Franco M; Staddon L; Champness NR; Briggs GA; Khlobystov AN
    Small; 2008 Dec; 4(12):2262-70. PubMed ID: 19003823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heating and cooling dynamics of carbon nanotubes observed by temperature-jump spectroscopy and electron microscopy.
    Mohammed OF; Samartzis PC; Zewail AH
    J Am Chem Soc; 2009 Nov; 131(44):16010-1. PubMed ID: 19842626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Cytotoxicity of fullerene (60), carbon nanotube, and their derivatives in V79 cells and cultured normal human astrocytes].
    Yamada T; Jung YS; Tsuchiya T; Matsuoka A
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2009; (127):39-43. PubMed ID: 20306705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local modifications of single-wall carbon nanotubes induced by bond formation with encapsulated fullerenes.
    Yumura T; Kertesz M; Iijima S
    J Phys Chem B; 2007 Feb; 111(5):1099-109. PubMed ID: 17266263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes.
    Markovic ZM; Harhaji-Trajkovic LM; Todorovic-Markovic BM; Kepić DP; Arsikin KM; Jovanović SP; Pantovic AC; Dramićanin MD; Trajkovic VS
    Biomaterials; 2011 Feb; 32(4):1121-9. PubMed ID: 21071083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and magnetic properties of Ni nanospheres encapsulated in a fullerene-like carbon.
    Pol SV; Pol VG; Frydman A; Churilov GN; Gedanken A
    J Phys Chem B; 2005 May; 109(19):9495-8. PubMed ID: 16852141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endohedral and exohedral hybrids involving fullerenes and carbon nanotubes.
    Vizuete M; Barrejón M; Gómez-Escalonilla MJ; Langa F
    Nanoscale; 2012 Aug; 4(15):4370-81. PubMed ID: 22706450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method for the containment and purification of filled open-ended single wall carbon nanotubes using C60 molecules.
    Shao L; Lin TW; Tobias G; Green ML
    Chem Commun (Camb); 2008 May; (18):2164-6. PubMed ID: 18438503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heterogeneous integration of single-walled carbon nanotubes onto complementary metal oxide semiconductor circuitry for sensing applications.
    Chen CL; Agarwal V; Sonkusale S; Dokmeci MR
    Nanotechnology; 2009 Jun; 20(22):225302. PubMed ID: 19433877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular hybrids of [60]fullerene and single-wall carbon nanotubes.
    Guldi DM; Menna E; Maggini M; Marcaccio M; Paolucci D; Paolucci F; Campidelli S; Prato M; Rahman GM; Schergna S
    Chemistry; 2006 May; 12(15):3975-83. PubMed ID: 16586415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computations of model narrow nanotubes closed by fragments of smaller fullerenes and quasi-fullerenes.
    Slanina Z; Uhlík F; Adamowicz L
    J Mol Graph Model; 2003 Jun; 21(6):517-22. PubMed ID: 12676238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic assemblies of carbon nanostructures for photochemical energy conversion.
    Guldi DM
    J Phys Chem B; 2005 Jun; 109(23):11432-41. PubMed ID: 16852399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging of nanocarbons in ambient conditions: probable metastability of carbon nanotubes.
    Yang L; Kim P; Meyer HM; Agnihotri S
    J Colloid Interface Sci; 2009 Oct; 338(1):128-34. PubMed ID: 19635621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electron-beam writing of highly conductive wires in functionalized fullerene films.
    Gibbons FP; Manickam M; Preece JA; Palmer RE; Robinson AP
    Small; 2009 Dec; 5(23):2750-5. PubMed ID: 19722186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers.
    Zhou Z; Zhao J; Schleyer Pv; Chen Z
    J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and mechanical properties of chitosan/carbon nanotubes composites.
    Wang SF; Shen L; Zhang WD; Tong YJ
    Biomacromolecules; 2005; 6(6):3067-72. PubMed ID: 16283728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of ordered nanowires in biological suspensions of single-wall carbon nanotubes.
    Hobbie EK; Fagan JA; Becker ML; Hudson SD; Fakhri N; Pasquali M
    ACS Nano; 2009 Jan; 3(1):189-96. PubMed ID: 19206266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal thermal kinetics of in situ MWCNT heating in biological tissues under NIR laser irradiation.
    Picou L; McMann C; Elzer PH; Enright FM; Biris AS; Boldor D
    Nanotechnology; 2010 Oct; 21(43):435101. PubMed ID: 20876978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery.
    Klingeler R; Hampel S; Büchner B
    Int J Hyperthermia; 2008 Sep; 24(6):496-505. PubMed ID: 18923989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.