BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 20527774)

  • 1. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries.
    Lu YC; Xu Z; Gasteiger HA; Chen S; Hamad-Schifferli K; Shao-Horn Y
    J Am Chem Soc; 2010 Sep; 132(35):12170-1. PubMed ID: 20527774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries.
    Lu YC; Gasteiger HA; Shao-Horn Y
    J Am Chem Soc; 2011 Nov; 133(47):19048-51. PubMed ID: 22044022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surprisingly strong effect of stabilizer on the properties of Au nanoparticles and Pt^Au nanostructures in electrocatalysis.
    Zhang GR; Xu BQ
    Nanoscale; 2010 Dec; 2(12):2798-804. PubMed ID: 20938521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platinum covering of gold nanoparticles for utilization enhancement of Pt in electrocatalysts.
    Zhao D; Xu BQ
    Phys Chem Chem Phys; 2006 Nov; 8(43):5106-14. PubMed ID: 17091161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction.
    Kim J; Lee Y; Sun S
    J Am Chem Soc; 2010 Apr; 132(14):4996-7. PubMed ID: 20297818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of highly active and stable Au-PtCu core-shell nanoparticles for oxygen reduction reaction.
    Hsu C; Huang C; Hao Y; Liu F
    Phys Chem Chem Phys; 2012 Nov; 14(42):14696-701. PubMed ID: 23032948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical synthesis of core-shell catalysts for electrocatalytic applications.
    Kulp C; Chen X; Puschhof A; Schwamborn S; Somsen C; Schuhmann W; Bron M
    Chemphyschem; 2010 Sep; 11(13):2854-61. PubMed ID: 20408156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.
    Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B
    Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li-O2 Batteries.
    Yoon KR; Kim DS; Ryu WH; Song SH; Youn DY; Jung JW; Jeon S; Park YJ; Kim ID
    ChemSusChem; 2016 Aug; 9(16):2080-8. PubMed ID: 27453065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O2 reduction by lithium on Au(111) and Pt(111).
    Xu Y; Shelton WA
    J Chem Phys; 2010 Jul; 133(2):024703. PubMed ID: 20632766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries.
    Park HW; Lee DU; Park MG; Ahmed R; Seo MH; Nazar LF; Chen Z
    ChemSusChem; 2015 Mar; 8(6):1058-65. PubMed ID: 25684405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1D coaxial platinum/titanium nitride nanotube arrays with enhanced electrocatalytic activity for the oxygen reduction reaction: towards Li-air batteries.
    Dong S; Chen X; Wang S; Gu L; Zhang L; Wang X; Zhou X; Liu Z; Han P; Duan Y; Xu H; Yao J; Zhang C; Zhang K; Cui G; Chen L
    ChemSusChem; 2012 Sep; 5(9):1712-5. PubMed ID: 22865577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction.
    Sasaki K; Zhang L; Adzic RR
    Phys Chem Chem Phys; 2008 Jan; 10(1):159-67. PubMed ID: 18075695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries.
    Dong S; Chen X; Zhang K; Gu L; Zhang L; Zhou X; Li L; Liu Z; Han P; Xu H; Yao J; Zhang C; Zhang X; Shang C; Cui G; Chen L
    Chem Commun (Camb); 2011 Oct; 47(40):11291-3. PubMed ID: 21927745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries.
    Jung KN; Jung JH; Im WB; Yoon S; Shin KH; Lee JW
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9902-7. PubMed ID: 24053465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst.
    Wu Z; Lv Y; Xia Y; Webley PA; Zhao D
    J Am Chem Soc; 2012 Feb; 134(4):2236-45. PubMed ID: 22257228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles.
    Tseng CW; Chang HY; Chang JY; Huang CC
    Nanoscale; 2012 Nov; 4(21):6823-30. PubMed ID: 23011048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical responses and electrocatalysis at single au nanoparticles.
    Li Y; Cox JT; Zhang B
    J Am Chem Soc; 2010 Mar; 132(9):3047-54. PubMed ID: 20148588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relating structural aspects of bimetallic Pt(3)Cr(1)/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction.
    Taufany F; Pan CJ; Chou HL; Rick J; Chen YS; Liu DG; Lee JF; Tang MT; Hwang BJ
    Chemistry; 2011 Sep; 17(38):10724-35. PubMed ID: 21837730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.