These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 20527804)
1. Using fluorine nuclear magnetic resonance to probe the interaction of membrane-active peptides with the lipid bilayer. Buer BC; Chugh J; Al-Hashimi HM; Marsh EN Biochemistry; 2010 Jul; 49(27):5760-5. PubMed ID: 20527804 [TBL] [Abstract][Full Text] [Related]
2. Using fluorine nuclear magnetic resonance to probe changes in the structure and dynamics of membrane-active peptides interacting with lipid bilayers. Suzuki Y; Buer BC; Al-Hashimi HM; Marsh EN Biochemistry; 2011 Jul; 50(27):5979-87. PubMed ID: 21644540 [TBL] [Abstract][Full Text] [Related]
3. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
4. Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels. Glaser RW; Sachse C; Dürr UH; Wadhwani P; Ulrich AS J Magn Reson; 2004 May; 168(1):153-63. PubMed ID: 15082261 [TBL] [Abstract][Full Text] [Related]
5. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study. Ouellet M; Doucet JD; Voyer N; Auger M Biochemistry; 2007 Jun; 46(22):6597-606. PubMed ID: 17487978 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen-14 solid-state NMR spectroscopy of aligned phospholipid bilayers to probe peptide-lipid interaction and oligomerization of membrane associated peptides. Ramamoorthy A; Lee DK; Santos JS; Henzler-Wildman KA J Am Chem Soc; 2008 Aug; 130(33):11023-9. PubMed ID: 18646853 [TBL] [Abstract][Full Text] [Related]
7. 4-fluorophenylglycine as a label for 19F NMR structure analysis of membrane-associated peptides. Afonin S; Glaser RW; Berditchevskaia M; Wadhwani P; Gührs KH; Möllmann U; Perner A; Ulrich AS Chembiochem; 2003 Nov; 4(11):1151-63. PubMed ID: 14613106 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
10. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides. Vagt T; Zschörnig O; Huster D; Koksch B Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794 [TBL] [Abstract][Full Text] [Related]
11. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
12. Membrane interactions in small fast-tumbling bicelles as studied by 31P NMR. Bodor A; Kövér KE; Mäler L Biochim Biophys Acta; 2015 Mar; 1848(3):760-6. PubMed ID: 25497765 [TBL] [Abstract][Full Text] [Related]
13. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Papo N; Shai Y Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173 [TBL] [Abstract][Full Text] [Related]
14. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
15. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
16. Solid-state (19)F-NMR of peptides in native membranes. Koch K; Afonin S; Ieronimo M; Berditsch M; Ulrich AS Top Curr Chem; 2012; 306():89-118. PubMed ID: 21598096 [TBL] [Abstract][Full Text] [Related]
17. Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Thennarasu S; Lee DK; Poon A; Kawulka KE; Vederas JC; Ramamoorthy A Chem Phys Lipids; 2005 Oct; 137(1-2):38-51. PubMed ID: 16095584 [TBL] [Abstract][Full Text] [Related]
18. Interaction of hydrophobic and amphipathic antimicrobial peptides with lipid bicelles. Bortolus M; Dalzini A; Toniolo C; Hahm KS; Maniero AL J Pept Sci; 2014 Jul; 20(7):517-25. PubMed ID: 24863176 [TBL] [Abstract][Full Text] [Related]
19. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
20. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]