BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20527829)

  • 1. Selective parallel integration of individual metallic single-walled carbon nanotubes from heterogeneous solutions.
    Burg BR; Schneider J; Bianco V; Schirmer NC; Poulikakos D
    Langmuir; 2010 Jul; 26(13):10419-24. PubMed ID: 20527829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous dispersion and dielectrophoretic assembly of individual surface-synthesized single-walled carbon nanotubes.
    Burg BR; Schneider J; Muoth M; Durrer L; Helbling T; Schirmer NC; Schwamb T; Hierold C; Poulikakos D
    Langmuir; 2009 Jul; 25(14):7778-82. PubMed ID: 19537808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel and orthogonal E-field alignment of single-walled carbon nanotubes by ac dielectrophoresis.
    Padmaraj D; Zagozdzon-Wosik W; Xie LM; Hadjiev VG; Cherukuri P; Wosik J
    Nanotechnology; 2009 Jan; 20(3):035201. PubMed ID: 19417287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the carbon nanotube-to-medium conductivity ratio for dielectrophoretic separation.
    Kang J; Hong S; Kim Y; Baik S
    Langmuir; 2009 Nov; 25(21):12471-4. PubMed ID: 19817475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoresis of surface conductance modulated single-walled carbon nanotubes using catanionic surfactants.
    Kim Y; Hong S; Jung S; Strano MS; Choi J; Baik S
    J Phys Chem B; 2006 Feb; 110(4):1541-5. PubMed ID: 16471712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous dielectrophoretic separation and assembly of single-walled carbon nanotubes on multigap nanoelectrodes and their thermal sensing properties.
    Chen Z; Wu Z; Tong L; Pan H; Liu Z
    Anal Chem; 2006 Dec; 78(23):8069-75. PubMed ID: 17134141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brownian dynamics simulations of single-wall carbon nanotube separation by type using dielectrophoresis.
    Mendes MJ; Schmidt HK; Pasquali M
    J Phys Chem B; 2008 Jun; 112(25):7467-77. PubMed ID: 18512886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the electrochemical behavior of two-dimensional networks of single-walled carbon nanotubes.
    Wilson NR; Guille M; Dumitrescu I; Fernandez VR; Rudd NC; Williams CG; Unwin PR; Macpherson JV
    Anal Chem; 2006 Oct; 78(19):7006-15. PubMed ID: 17007527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes.
    Zhou R; Wang P; Chang HC
    Electrophoresis; 2006 Apr; 27(7):1376-85. PubMed ID: 16568404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separated metallic and semiconducting single-walled carbon nanotubes: opportunities in transparent electrodes and beyond.
    Lu F; Meziani MJ; Cao L; Sun YP
    Langmuir; 2011 Apr; 27(8):4339-50. PubMed ID: 20942475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the structures of superlong oriented single-walled carbon nanotube arrays by electrodeposition of metal and Raman spectroscopy.
    Huang S; Qian Y; Chen J; Cai Q; Wan L; Wang S; Hu W
    J Am Chem Soc; 2008 Sep; 130(36):11860-1. PubMed ID: 18702491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts.
    Lu J; Lai L; Luo G; Zhou J; Qin R; Wang D; Wang L; Mei WN; Li G; Gao Z; Nagase S; Maeda Y; Akasaka T; Yu D
    Small; 2007 Sep; 3(9):1566-76. PubMed ID: 17705313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical transport characteristics of surface-conductance-controlled, dielectrophoretically separated single-walled carbon nanotubes.
    Hong S; Jung S; Choi J; Kim Y; Baik S
    Langmuir; 2007 Apr; 23(9):4749-52. PubMed ID: 17397205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards carbon-nanotube integrated devices: optically controlled parallel integration of single-walled carbon nanotubes.
    Zhou YS; Xiong W; Gao Y; Mahjouri-Samani M; Mitchell M; Jiang L; Lu YF
    Nanotechnology; 2010 Aug; 21(31):315601. PubMed ID: 20622296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-aligned growth of single-walled carbon nanotubes using optical near-field effects.
    Xiong W; Zhou YS; Mahjouri-Samani M; Yang WQ; Yi KJ; He XN; Liou SH; Lu YF
    Nanotechnology; 2009 Jan; 20(2):025601. PubMed ID: 19417270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-walled carbon nanotube network ultramicroelectrodes.
    Dumitrescu I; Unwin PR; Wilson NR; Macpherson JV
    Anal Chem; 2008 May; 80(10):3598-605. PubMed ID: 18410133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile and scalable route for highly efficient enrichment of semiconducting single-walled carbon nanotubes.
    Qiu H; Maeda Y; Akasaka T
    J Am Chem Soc; 2009 Nov; 131(45):16529-33. PubMed ID: 19860464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation effects on the Raman spectroscopy of dielectrophoretically deposited single-walled carbon nanotubes.
    Ericson LM; Pehrsson PE
    J Phys Chem B; 2005 Nov; 109(43):20276-80. PubMed ID: 16853622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.