BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 20527833)

  • 1. Formation and colloidal stability of DMPC supported lipid bilayers on SiO2 nanobeads.
    Savarala S; Ahmed S; Ilies MA; Wunder SL
    Langmuir; 2010 Jul; 26(14):12081-8. PubMed ID: 20527833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid exchange and transfer on nanoparticle supported lipid bilayers: effect of defects, ionic strength, and size.
    Drazenovic J; Ahmed S; Tuzinkiewicz NM; Wunder SL
    Langmuir; 2015 Jan; 31(2):721-31. PubMed ID: 25425021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supported lipid bilayer nanosystems: stabilization by undulatory-protrusion forces and destabilization by lipid bridging.
    Savarala S; Monson F; Ilies MA; Wunder SL
    Langmuir; 2011 May; 27(10):5850-61. PubMed ID: 21500811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of high surface curvature on the main phase transition of supported phospholipid bilayers on SiO2 nanoparticles.
    Ahmed S; Wunder SL
    Langmuir; 2009 Apr; 25(6):3682-91. PubMed ID: 19231878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization modulation infrared reflection absorption spectroscopy investigations of thin silica films deposited on gold. 2. Structural analysis of a 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer.
    Zawisza I; Wittstock G; Boukherroub R; Szunerits S
    Langmuir; 2008 Apr; 24(8):3922-9. PubMed ID: 18327962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle-supported lipid bilayers as an in situ remediation strategy for hydrophobic organic contaminants in soils.
    Wang H; Kim B; Wunder SL
    Environ Sci Technol; 2015 Jan; 49(1):529-36. PubMed ID: 25454259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers.
    Mecke A; Uppuluri S; Sassanella TM; Lee DK; Ramamoorthy A; Baker JR; Orr BG; Banaszak Holl MM
    Chem Phys Lipids; 2004 Nov; 132(1):3-14. PubMed ID: 15530443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of soft lipid colloids: competing effects of nanoparticle decoration and supported lipid bilayer formation.
    Savarala S; Ahmed S; Ilies MA; Wunder SL
    ACS Nano; 2011 Apr; 5(4):2619-28. PubMed ID: 21381770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipation-enhanced quartz crystal microbalance studies on the experimental parameters controlling the formation of supported lipid bilayers.
    Seantier B; Breffa C; Félix O; Decher G
    J Phys Chem B; 2005 Nov; 109(46):21755-65. PubMed ID: 16853826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid bilayer blanketing versus penetrating silica colloidal crystals.
    Soemo AR; Wirth MJ
    Langmuir; 2010 Feb; 26(4):2196-9. PubMed ID: 20092346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confocal-Raman Microscopy Characterization of Supported Phospholipid Bilayers Deposited on the Interior Surfaces of Chromatographic Silica.
    Bryce DA; Kitt JP; Harris JM
    J Am Chem Soc; 2018 Mar; 140(11):4071-4078. PubMed ID: 29486122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interrogating the role of liposome size in mediating the dynamics of a chromophore in the acyl chain region of a phospholipid bilayer.
    Lapinski MM; Blanchard GJ
    Chem Phys Lipids; 2008 Jun; 153(2):130-7. PubMed ID: 18396153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AFM studies of the effect of temperature and electric field on the structure of a DMPC-cholesterol bilayer supported on a Au(111) electrode surface.
    Chen M; Li M; Brosseau CL; Lipkowski J
    Langmuir; 2009 Jan; 25(2):1028-37. PubMed ID: 19113809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of phase separating lipids on supported lipid bilayer formation at SiO2 surfaces.
    Sundh M; Svedhem S; Sutherland DS
    Phys Chem Chem Phys; 2010 Jan; 12(2):453-60. PubMed ID: 20023823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of supported lipid bilayers on silica particles studied using flow cytometry.
    Nordlund G; Lönneborg R; Brzezinski P
    Langmuir; 2009 Apr; 25(8):4601-6. PubMed ID: 19265407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical studies of the interaction of the lipoheptapeptide surfactin with lipid bilayers of L-alpha-dimyristoyl phosphatidylcholine.
    Kell H; Holzwarth JF; Boettcher C; Heenan RK; Vater J
    Biophys Chem; 2007 Jul; 128(2-3):114-24. PubMed ID: 17383076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. β-Phase formation of poly(9,9-dioctylfluorene) induced by liposome phospholipid bilayers.
    Tapia MJ; Monteserín M; Burrows HD; de Melo JS; Pina J; Castro RA; García S; Estelrich J
    J Phys Chem B; 2011 May; 115(19):5794-800. PubMed ID: 21520954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of N-lauryl-N,N-dimethylamine N-oxide on dimyristoyl phosphatidylcholine bilayer thickness: a small-angle neutron scattering study.
    Dubnicková M; Kiselev M; Kutuzov S; Devínsky F; Gordeliy V; Balgavý P
    Gen Physiol Biophys; 1997 Jun; 16(2):175-88. PubMed ID: 9437258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification for stability of nano-sized silica colloids.
    Pham KN; Fullston D; Sagoe-Crentsil K
    J Colloid Interface Sci; 2007 Nov; 315(1):123-7. PubMed ID: 17686487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of forces between a colloidal particle and a phospholipid bilayer.
    Sharp JM; Duran RS; Dickinson RB
    J Colloid Interface Sci; 2006 Jul; 299(1):182-90. PubMed ID: 16500670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.