These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 20528182)
1. Allozyme-specific modification of a maize seed chitinase by a protein secreted by the fungal pathogen Stenocarpella maydis. Naumann TA; Wicklow DT Phytopathology; 2010 Jul; 100(7):645-54. PubMed ID: 20528182 [TBL] [Abstract][Full Text] [Related]
2. Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins. Naumann TA Mol Plant Pathol; 2011 May; 12(4):365-72. PubMed ID: 21453431 [TBL] [Abstract][Full Text] [Related]
4. Identification of a chitinase-modifying protein from Fusarium verticillioides: truncation of a host resistance protein by a fungalysin metalloprotease. Naumann TA; Wicklow DT; Price NPJ J Biol Chem; 2011 Oct; 286(41):35358-35366. PubMed ID: 21878653 [TBL] [Abstract][Full Text] [Related]
5. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize. Wicklow DT; Rogers KD; Dowd PF; Gloer JB Fungal Biol; 2011 Feb; 115(2):133-42. PubMed ID: 21315311 [TBL] [Abstract][Full Text] [Related]
6. Crystallographic structure of ChitA, a glycoside hydrolase family 19, plant class IV chitinase from Zea mays. Chaudet MM; Naumann TA; Price NP; Rose DR Protein Sci; 2014 May; 23(5):586-93. PubMed ID: 24616181 [TBL] [Abstract][Full Text] [Related]
7. Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis. Zaccaron AZ; Woloshuk CP; Bluhm BH Fungal Biol; 2017 Nov; 121(11):966-983. PubMed ID: 29029703 [TBL] [Abstract][Full Text] [Related]
8. Recognition of corn defense chitinases by fungal polyglycine hydrolases. Naumann TA; Bakota EL; Price NPJ Protein Sci; 2017 Jun; 26(6):1214-1223. PubMed ID: 28383143 [TBL] [Abstract][Full Text] [Related]
9. Diplodiatoxin, chaetoglobosins, and diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois. Rogers KD; Cannistra JC; Gloer JB; Wicklow DT Mycotoxin Res; 2014 May; 30(2):61-70. PubMed ID: 24504633 [TBL] [Abstract][Full Text] [Related]
10. Genomic selection to resistance to Stenocarpella maydis in maize lines using DArTseq markers. Dos Santos JP; Pires LP; de Castro Vasconcellos RC; Pereira GS; Von Pinho RG; Balestre M BMC Genet; 2016 Jun; 17(1):86. PubMed ID: 27316946 [TBL] [Abstract][Full Text] [Related]
11. Indirect selection for resistance to ear rot and leaf diseases in maize lines using biplots. Pereira GS; Camargos RB; Balestre M; Von Pinho RG; C Melo WM Genet Mol Res; 2015 Sep; 14(3):11052-62. PubMed ID: 26400335 [TBL] [Abstract][Full Text] [Related]
12. Dual function of a secreted fungalysin metalloprotease in Ustilago maydis. Ökmen B; Kemmerich B; Hilbig D; Wemhöner R; Aschenbroich J; Perrar A; Huesgen PF; Schipper K; Doehlemann G New Phytol; 2018 Oct; 220(1):249-261. PubMed ID: 29916208 [TBL] [Abstract][Full Text] [Related]
13. Infection and ultrastructure of conidia and pycnidia of Stenocarpella maydis in maize. Xia Z; Wu H; Achar PN J Food Prot; 2011 Apr; 74(4):676-80. PubMed ID: 21477487 [TBL] [Abstract][Full Text] [Related]
14. A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.). Yuan J; Liakat Ali M; Taylor J; Liu J; Sun G; Liu W; Masilimany P; Gulati-Sakhuja A; Pauls KP Theor Appl Genet; 2008 Feb; 116(4):465-79. PubMed ID: 18074115 [TBL] [Abstract][Full Text] [Related]
15. Fungus- and wound-induced accumulation of mRNA containing a class II chitinase of the pathogenesis-related protein 4 (PR-4) family of maize. Bravo JM; Campo S; Murillo I; Coca M; San Segundo B Plant Mol Biol; 2003 Jul; 52(4):745-59. PubMed ID: 13677464 [TBL] [Abstract][Full Text] [Related]
16. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia. Mukanga M; Derera J; Tongoona P; Laing MD Int J Food Microbiol; 2010 Jul; 141(3):213-21. PubMed ID: 20626099 [TBL] [Abstract][Full Text] [Related]
17. Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. Huynh QK; Hironaka CM; Levine EB; Smith CE; Borgmeyer JR; Shah DM J Biol Chem; 1992 Apr; 267(10):6635-40. PubMed ID: 1551872 [TBL] [Abstract][Full Text] [Related]
18. The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in maize. Christensen SA; Nemchenko A; Park YS; Borrego E; Huang PC; Schmelz EA; Kunze S; Feussner I; Yalpani N; Meeley R; Kolomiets MV Mol Plant Microbe Interact; 2014 Nov; 27(11):1263-76. PubMed ID: 25122482 [TBL] [Abstract][Full Text] [Related]
19. Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize. Wicklow DT; Jordan AM; Gloer JB Mycol Res; 2009 Dec; 113(Pt 12):1433-42. PubMed ID: 19825415 [TBL] [Abstract][Full Text] [Related]
20. Effects of host plant environment and Ustilago maydis infection on the fungal endophyte community of maize (Zea mays). Pan JJ; Baumgarten AM; May G New Phytol; 2008; 178(1):147-156. PubMed ID: 18194146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]