These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20528674)

  • 1. Mechanical loading affects angiogenesis and osteogenesis in an in vivo bone chamber: a modeling study.
    Geris L; Vandamme K; Naert I; Vander Sloten J; Van Oosterwyck H; Duyck J
    Tissue Eng Part A; 2010 Nov; 16(11):3353-61. PubMed ID: 20528674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of bone regeneration in a bone chamber.
    Geris L; Vandamme K; Naert I; Vander Sloten J; Duyck J; Van Oosterwyck H
    J Dent Res; 2009 Feb; 88(2):158-63. PubMed ID: 19278988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of mechanoregulatory models to simulate peri-implant tissue formation in an in vivo bone chamber.
    Geris L; Vandamme K; Naert I; Vander Sloten J; Duyck J; Van Oosterwyck H
    J Biomech; 2008; 41(1):145-54. PubMed ID: 17706229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peri-implant osteogenesis in health and osteoporosis.
    Marco F; Milena F; Gianluca G; Vittoria O
    Micron; 2005; 36(7-8):630-44. PubMed ID: 16182543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit.
    Vandamme K; Naert I; Geris L; Sloten JV; Puers R; Duyck J
    Clin Oral Implants Res; 2007 Aug; 18(4):471-80. PubMed ID: 17517061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of mechanobiological models for the numerical simulation of tissue differentiation around immediately loaded implants.
    Geris L; Van Oosterwyck H; Vander Sloten J; Duyck J; Naert I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):277-88. PubMed ID: 14675948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A repeated sampling bone chamber methodology for the evaluation of tissue differentiation and bone adaptation around titanium implants under controlled mechanical conditions.
    Duyck J; Cooman MD; Puers R; Van Oosterwyck H; Sloten JV; Naert I
    J Biomech; 2004 Dec; 37(12):1819-22. PubMed ID: 15519589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions.
    Geris L; Sloten JV; Van Oosterwyck H
    Biomech Model Mechanobiol; 2010 Dec; 9(6):713-24. PubMed ID: 20333537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of tissue differentiation around loaded titanium implants in a bone chamber.
    Geris L; Andreykiv A; Van Oosterwyck H; Sloten JV; van Keulen F; Duyck J; Naert I
    J Biomech; 2004 May; 37(5):763-9. PubMed ID: 15047006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of the effect of time-to-loading on peri-implant bone.
    Akça K; Eser A; Canay S
    Med Eng Phys; 2010 Jan; 32(1):7-13. PubMed ID: 19864171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational mechanobiology to study the effect of surface geometry on peri-implant tissue differentiation.
    Andreykiv A; van Keulen F; Prendergast PJ
    J Biomech Eng; 2008 Oct; 130(5):051015. PubMed ID: 19045522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational simulation of dental implant osseointegration through resonance frequency analysis.
    Pérez MA; Moreo P; García-Aznar JM; Doblaré M
    J Biomech; 2008; 41(2):316-25. PubMed ID: 17976627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of controlled immediate loading and implant design on peri-implant bone formation.
    Vandamme K; Naert I; Geris L; Vander Sloten J; Puers R; Duyck J
    J Clin Periodontol; 2007 Feb; 34(2):172-81. PubMed ID: 17309592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of Young's modulus of loaded implants on bone remodeling: an experimental and numerical study in the goat knee.
    Stoppie N; Van Oosterwyck H; Jansen J; Wolke J; Wevers M; Naert I
    J Biomed Mater Res A; 2009 Sep; 90(3):792-803. PubMed ID: 18615463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5-10 Hz.
    Warden SJ; Turner CH
    Bone; 2004 Feb; 34(2):261-70. PubMed ID: 14962804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-species investigation of the mechano-regulation of bone healing: comparison of secondary bone healing in sheep and rat.
    Checa S; Prendergast PJ; Duda GN
    J Biomech; 2011 Apr; 44(7):1237-45. PubMed ID: 21419412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach.
    Khayyeri H; Checa S; Tägil M; Prendergast PJ
    J Orthop Res; 2009 Dec; 27(12):1659-66. PubMed ID: 19514073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo expression of osteogenic markers and bone mineral density at the surface of fluoride-modified titanium implants.
    Monjo M; Lamolle SF; Lyngstadaas SP; Rønold HJ; Ellingsen JE
    Biomaterials; 2008 Oct; 29(28):3771-80. PubMed ID: 18585777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity.
    Checa S; Prendergast PJ
    J Biomech; 2010 Mar; 43(5):961-8. PubMed ID: 19954779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.