BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20528689)

  • 21. The F-techniques: advances in receptor protein studies.
    Liu P; Ahmed S; Wohland T
    Trends Endocrinol Metab; 2008 Jul; 19(5):181-90. PubMed ID: 18387308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal analysis of total internal reflection fluorescent speckle microscopy (TIR-FSM) and wide-field epi-fluorescence FSM of the actin cytoskeleton and focal adhesions in living cells.
    Adams MC; Matov A; Yarar D; Gupton SL; Danuser G; Waterman-Storer CM
    J Microsc; 2004 Nov; 216(Pt 2):138-52. PubMed ID: 15516225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence microscopy investigations of ligand propagation and accessibility under adherent cells.
    Swift JL; Sergeev M; Wiseman PW
    Biointerphases; 2010 Dec; 5(4):139-48. PubMed ID: 21219035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploration into the spatial and temporal mechanisms of bacterial polarity.
    Ebersbach G; Jacobs-Wagner C
    Trends Microbiol; 2007 Mar; 15(3):101-8. PubMed ID: 17275310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concepts for nanoscale resolution in fluorescence microscopy.
    Hell SW; Dyba M; Jakobs S
    Curr Opin Neurobiol; 2004 Oct; 14(5):599-609. PubMed ID: 15464894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uniform total internal reflection fluorescence illumination enables live cell fluorescence resonance energy transfer microscopy.
    Lin J; Hoppe AD
    Microsc Microanal; 2013 Apr; 19(2):350-9. PubMed ID: 23472941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in cytosolic ATP levels and intracellular morphology during bacteria-induced hypersensitive cell death as revealed by real-time fluorescence microscopy imaging.
    Hatsugai N; Perez Koldenkova V; Imamura H; Noji H; Nagai T
    Plant Cell Physiol; 2012 Oct; 53(10):1768-75. PubMed ID: 22942251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescent protein applications in plants.
    Berg RH; Beachy RN
    Methods Cell Biol; 2008; 85():153-77. PubMed ID: 18155463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fundamentals of fluorescence and fluorescence microscopy.
    Wolf DE
    Methods Cell Biol; 2013; 114():69-97. PubMed ID: 23931503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The interplay between discrete noise and nonlinear chemical kinetics in a signal amplification cascade.
    Lan Y; Papoian GA
    J Chem Phys; 2006 Oct; 125(15):154901. PubMed ID: 17059287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining ocFLIM and FIDSAM reveals fast and dynamic physiological responses at subcellular resolution in living plant cells.
    Elgass K; Caesar K; Harter K; Meixner AJ; Schleifenbaum F
    J Microsc; 2011 May; 242(2):124-31. PubMed ID: 21118238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative imaging of a bacterial surface-located GFP fusion protein by epifluorescence and scanning near-field optical microscopy.
    Gunning AP; Bongaerts RJ; Kirby AR; Hinton JC; Morris VJ
    J Microsc; 2005 Apr; 218(Pt 1):46-51. PubMed ID: 15817062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of fluorescence microscopy to analyze genetic circuit dynamics.
    Süel G
    Methods Enzymol; 2011; 497():275-93. PubMed ID: 21601092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evanescent-wave field imaging: an introduction to total internal reflection fluorescence microscopy.
    Millis BA
    Methods Mol Biol; 2012; 823():295-309. PubMed ID: 22081353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of HIV-1 assembly and release using modern fluorescence imaging techniques.
    Chojnacki J; Müller B
    Traffic; 2013 Jan; 14(1):15-24. PubMed ID: 22957540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Devising powerful genetics, biochemical and structural tools in the functional analysis of phosphatidylinositol transfer proteins (PITPs) across diverse species.
    Davison JM; Bankaitis VA; Ghosh R
    Methods Cell Biol; 2012; 108():249-302. PubMed ID: 22325607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compartmentalization and spatiotemporal organization of macromolecules in bacteria.
    Govindarajan S; Nevo-Dinur K; Amster-Choder O
    FEMS Microbiol Rev; 2012 Sep; 36(5):1005-22. PubMed ID: 22775310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visualizing single molecules in living Dictyostelium cells using total internal reflection fluorescent microscopy (TIRFM).
    Matsuoka S; Miyanaga Y; Yanagida T; Ueda M
    Cold Spring Harb Protoc; 2012 Mar; 2012(3):349-51. PubMed ID: 22383650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of some cell death features by real time real space microscopy.
    Smaili SS; Rosenstock TR; Hsu YT
    Methods Enzymol; 2008; 442():27-50. PubMed ID: 18662563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chapter 8: Spatiotemporal dynamics in bacterial cells: real-time studies with single-event resolution.
    Golding I; Cox EC
    Methods Cell Biol; 2008; 89():223-51. PubMed ID: 19118677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.