These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 20528774)
1. The myeloperoxidase-derived oxidant HOSCN inhibits protein tyrosine phosphatases and modulates cell signalling via the mitogen-activated protein kinase (MAPK) pathway in macrophages. Lane AE; Tan JT; Hawkins CL; Heather AK; Davies MJ Biochem J; 2010 Aug; 430(1):161-9. PubMed ID: 20528774 [TBL] [Abstract][Full Text] [Related]
2. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues. Cook NL; Moeke CH; Fantoni LI; Pattison DI; Davies MJ Free Radic Biol Med; 2016 Jan; 90():195-205. PubMed ID: 26616646 [TBL] [Abstract][Full Text] [Related]
3. Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols: absolute rate constants and assessment of biological relevance. Skaff O; Pattison DI; Davies MJ Biochem J; 2009 Jul; 422(1):111-7. PubMed ID: 19492988 [TBL] [Abstract][Full Text] [Related]
4. Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid. Lloyd MM; van Reyk DM; Davies MJ; Hawkins CL Biochem J; 2008 Sep; 414(2):271-80. PubMed ID: 18459943 [TBL] [Abstract][Full Text] [Related]
5. Cellular targets of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) and its role in the inhibition of glycolysis in macrophages. Love DT; Barrett TJ; White MY; Cordwell SJ; Davies MJ; Hawkins CL Free Radic Biol Med; 2016 May; 94():88-98. PubMed ID: 26898502 [TBL] [Abstract][Full Text] [Related]
6. The role of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) in the induction of mitochondrial dysfunction in macrophages. Love DT; Guo C; Nikelshparg EI; Brazhe NA; Sosnovtseva O; Hawkins CL Redox Biol; 2020 Sep; 36():101602. PubMed ID: 32570189 [TBL] [Abstract][Full Text] [Related]
7. Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells. Lloyd MM; Grima MA; Rayner BS; Hadfield KA; Davies MJ; Hawkins CL Free Radic Biol Med; 2013 Dec; 65():1352-1362. PubMed ID: 24120969 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of thiol-dependent enzymes by hypothiocyanous acid: role of sulfenyl thiocyanate and sulfenic acid intermediates. Barrett TJ; Pattison DI; Leonard SE; Carroll KS; Davies MJ; Hawkins CL Free Radic Biol Med; 2012 Mar; 52(6):1075-85. PubMed ID: 22248862 [TBL] [Abstract][Full Text] [Related]
9. Selenium-containing amino acids are targets for myeloperoxidase-derived hypothiocyanous acid: determination of absolute rate constants and implications for biological damage. Skaff O; Pattison DI; Morgan PE; Bachana R; Jain VK; Priyadarsini KI; Davies MJ Biochem J; 2012 Jan; 441(1):305-16. PubMed ID: 21892922 [TBL] [Abstract][Full Text] [Related]
11. A pivotal role for NF-κB in the macrophage inflammatory response to the myeloperoxidase oxidant hypothiocyanous acid. Pan GJ; Rayner BS; Zhang Y; van Reyk DM; Hawkins CL Arch Biochem Biophys; 2018 Mar; 642():23-30. PubMed ID: 29410057 [TBL] [Abstract][Full Text] [Related]
12. Role of thiocyanate in the modulation of myeloperoxidase-derived oxidant induced damage to macrophages. Guo C; Davies MJ; Hawkins CL Redox Biol; 2020 Sep; 36():101666. PubMed ID: 32781424 [TBL] [Abstract][Full Text] [Related]
13. Comparative reactivity of the myeloperoxidase-derived oxidants HOCl and HOSCN with low-density lipoprotein (LDL): Implications for foam cell formation in atherosclerosis. Ismael FO; Proudfoot JM; Brown BE; van Reyk DM; Croft KD; Davies MJ; Hawkins CL Arch Biochem Biophys; 2015 May; 573():40-51. PubMed ID: 25795019 [TBL] [Abstract][Full Text] [Related]
14. Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids. Pattison DI; Davies MJ; Hawkins CL Free Radic Res; 2012 Aug; 46(8):975-95. PubMed ID: 22348603 [TBL] [Abstract][Full Text] [Related]
16. Substrate-dependent metabolomic signatures of myeloperoxidase activity in airway epithelial cells: Implications for early cystic fibrosis lung disease. Kim SO; Shapiro JP; Cottrill KA; Collins GL; Shanthikumar S; Rao P; Ranganathan S; Stick SM; Orr ML; Fitzpatrick AM; Go YM; Jones DP; Tirouvanziam RM; Chandler JD Free Radic Biol Med; 2023 Sep; 206():180-190. PubMed ID: 37356776 [TBL] [Abstract][Full Text] [Related]
17. The therapeutic potential of thiocyanate and hypothiocyanous acid against pulmonary infections. Ashtiwi NM; Kim SO; Chandler JD; Rada B Free Radic Biol Med; 2024 Jul; 219():104-111. PubMed ID: 38608822 [TBL] [Abstract][Full Text] [Related]
18. Thiocyanate supplementation decreases atherosclerotic plaque in mice expressing human myeloperoxidase. Morgan PE; Laura RP; Maki RA; Reynolds WF; Davies MJ Free Radic Res; 2015 Jun; 49(6):743-9. PubMed ID: 25812586 [TBL] [Abstract][Full Text] [Related]
19. The role of sodium thiocyanate supplementation during dextran sodium sulphate-stimulated experimental colitis. Liu Y; Burton T; Rayner BS; San Gabriel PT; Shi H; El Kazzi M; Wang X; Dennis JM; Ahmad G; Schroder AL; Gao A; Witting PK; Chami B Arch Biochem Biophys; 2020 Oct; 692():108490. PubMed ID: 32721434 [TBL] [Abstract][Full Text] [Related]
20. High plasma thiocyanate levels modulate protein damage induced by myeloperoxidase and perturb measurement of 3-chlorotyrosine. Talib J; Pattison DI; Harmer JA; Celermajer DS; Davies MJ Free Radic Biol Med; 2012 Jul; 53(1):20-9. PubMed ID: 22609005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]