These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20529711)

  • 1. Shear modulus estimation with vibrating needle stimulation.
    Orescanin M; Insana M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1358-67. PubMed ID: 20529711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.
    Orescanin M; Wang Y; Insana M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):389-98. PubMed ID: 21342824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity.
    Deffieux T; Montaldo G; Tanter M; Fink M
    IEEE Trans Med Imaging; 2009 Mar; 28(3):313-22. PubMed ID: 19244004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic properties of rodent mammary tumors using ultrasonic shear-wave imaging.
    Wang Y; Insana MF
    Ultrason Imaging; 2013 Apr; 35(2):126-45. PubMed ID: 23493612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of 1-D transient elastography for the shear modulus assessment of thin-layered soft tissue: comparison with supersonic shear imaging technique.
    Brum J; Gennisson JL; Nguyen TM; Benech N; Fink M; Tanter M; Negreira C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):703-14. PubMed ID: 22547281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion and shear modulus measurements of porcine liver.
    Orescanin M; Qayyum MA; Toohey KS; Insana MF
    Ultrason Imaging; 2010 Oct; 32(4):255-66. PubMed ID: 21213570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of the boundary conditions on longitudinal wave propagation in a viscoelastic medium.
    Eskandari H; Baghani A; Salcudean SE; Rohling R
    Phys Med Biol; 2009 Jul; 54(13):3997-4017. PubMed ID: 19502703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms.
    Amador C; Urban MW; Chen S; Chen Q; An KN; Greenleaf JF
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1706-14. PubMed ID: 21317078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indentation Measurements to Validate Dynamic Elasticity Imaging Methods.
    Altahhan KN; Wang Y; Sobh N; Insana MF
    Ultrason Imaging; 2016 Sep; 38(5):332-45. PubMed ID: 26376923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of viscous and elastic properties of sub-wavelength layered soft tissues using shear wave spectroscopy: theoretical framework and in vitro experimental validation.
    Nguyen TM; Couade M; Bercoff J; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2305-15. PubMed ID: 22083764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements.
    Elkateb Hachemi M; Callé S; Remenieras JP
    Ultrasonics; 2006 Dec; 44 Suppl 1():e221-5. PubMed ID: 16843510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wave simulation in biologic media based on the Kelvin-Voigt fractional-derivative stress-strain relation.
    Caputo M; Carcione JM; Cavallini F
    Ultrasound Med Biol; 2011 Jun; 37(6):996-1004. PubMed ID: 21601139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry.
    Urban MW; Chen S; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):748-58. PubMed ID: 19406703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method for shear wave speed estimation in shear wave elastography.
    Engel AJ; Bashford GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2106-14. PubMed ID: 26670851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological assessment of a polymeric spherical structure using a three-dimensional shear wave scattering model in dynamic spectroscopy elastography.
    Montagnon E; Hadj-Henni A; Schmitt C; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):277-87. PubMed ID: 24474134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo quantitative mapping of myocardial stiffening and transmural anisotropy during the cardiac cycle.
    Couade M; Pernot M; Messas E; Bel A; Ba M; Hagege A; Fink M; Tanter M
    IEEE Trans Med Imaging; 2011 Feb; 30(2):295-305. PubMed ID: 20851788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear wave speed and dispersion measurements using crawling wave chirps.
    Hah Z; Partin A; Parker KJ
    Ultrason Imaging; 2014 Oct; 36(4):277-90. PubMed ID: 24658144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior.
    Schmitt C; Hadj Henni A; Cloutier G
    J Biomech; 2011 Feb; 44(4):622-9. PubMed ID: 21122863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1-D elasticity assessment in soft solids from shear wave correlation: the time-reversal approach.
    Benech N; Catheline S; Brum J; Gallot T; Negreira CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2400-10. PubMed ID: 19942527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of shear modulus in media with power law characteristics.
    Zhang W; Holm S
    Ultrasonics; 2016 Jan; 64():170-6. PubMed ID: 26385841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.