BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 20529718)

  • 1. Noncontact ultrasonic transportation of small objects in a circular trajectory in air by flexural vibrations of a circular disc.
    Koyama D; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1434-42. PubMed ID: 20529718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector.
    Koyama D; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1152-9. PubMed ID: 20442026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a junction for a noncontact ultrasonic transportation system.
    Kashima R; Murakami S; Koyama D; Nakamura K; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):1024-32. PubMed ID: 24859666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional noncontact transportation of small objects in air using flexural vibration of a plate.
    Kashima R; Koyama D; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2161-8. PubMed ID: 26670855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self-running standing wave-type bidirectional slider for the ultrasonically levitated thin linear stage.
    Koyama D; Takei H; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1823-30. PubMed ID: 18986924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncontact Transportation of Planar Object in an Ultrasound Waveguide.
    Masuda K; Koyama D; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2160-2166. PubMed ID: 30418873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ultrasonic air pump using an acoustic traveling wave along a small air gap.
    Koyama D; Wada Y; Nakamura K; Nishikawa M; Nakagawa T; Kihara H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):253-61. PubMed ID: 20040451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plate-shaped non-contact ultrasonic transporter using flexural vibration.
    Ishii T; Mizuno Y; Koyama D; Nakamura K; Harada K; Uchida Y
    Ultrasonics; 2014 Feb; 54(2):455-60. PubMed ID: 23876434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.
    Thomas GPL; Andrade MAB; Adamowski JC; Silva ECN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 May; 64(5):839-846. PubMed ID: 28252394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation impedance and equivalent circuit for piezoelectric ultrasonic composite transducers of vibrational mode-conversion.
    Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):139-49. PubMed ID: 22293744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and experimental study on near-field acoustic levitation by flexural mode.
    Liu P; Li J; Ding H; Cao W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2679-85. PubMed ID: 20040404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the high power air-coupled ultrasonic compound transducer.
    Lin S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e545-8. PubMed ID: 16793074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A piezoelectric motor using flexural vibration of a thin piezoelectric membrane.
    Lamberti N; Iula A; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):23-9. PubMed ID: 18244154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic trapping of small particles by a vibrating rod.
    Liu Y; Hu J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):798-805. PubMed ID: 19406708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new standing-wave-type linear ultrasonic motor based on in-plane modes.
    Shi Y; Zhao C
    Ultrasonics; 2011 May; 51(4):397-404. PubMed ID: 21186039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.
    Koyama D; Kotera H; Kitazawa N; Yoshida K; Nakamura K; Watanabe Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):737-43. PubMed ID: 21507751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip ultrasonic manipulation of microparticles by using the flexural vibration of a glass substrate.
    Yamamoto R; Koyama D; Matsukawa M
    Ultrasonics; 2017 Aug; 79():81-86. PubMed ID: 28453970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ultrasonically levitated noncontact stage using traveling vibrations on precision ceramic guide rails.
    Koyama D; Ide T; Friend JR; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):597-604. PubMed ID: 17375828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of a new type linear ultrasonic motor with double-driving feet.
    Lu C; Xie T; Zhou T; Chen Y
    Ultrasonics; 2006 Dec; 44 Suppl 1():e585-9. PubMed ID: 16806382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piezoelectric ceramic rectangular transducers in flexural vibration.
    Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jul; 51(7):865-70. PubMed ID: 15301006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.