These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 20529718)

  • 81. Surface acoustic wave (SAW) vibration sensors.
    Filipiak J; Solarz L; Steczko G
    Sensors (Basel); 2011; 11(12):11809-32. PubMed ID: 22247694
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Enhancing the absorption coefficient of a backed rigid frame porous layer by embedding circular periodic inclusions.
    Groby JP; Dazel O; Duclos A; Boeckx L; Kelders L
    J Acoust Soc Am; 2011 Dec; 130(6):3771-80. PubMed ID: 22225034
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A standing wave-type noncontact linear ultrasonic motor.
    Hu J; Li G; Chan HL; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):699-708. PubMed ID: 11381693
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Array-controlled ultrasonic manipulation of particles in planar acoustic resonator.
    Glynne-Jones P; Démoré CE; Ye C; Qiu Y; Cochran S; Hill M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1258-66. PubMed ID: 22718876
    [TBL] [Abstract][Full Text] [Related]  

  • 85. An ultrasonic stage for controlled spin of micro particles.
    Zhou Y; Li H; Hu J
    Rev Sci Instrum; 2012 Apr; 83(4):045004. PubMed ID: 22559568
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Research on the displacement function and equivalent circuit of circular flexural vibration mode piezoelectric ceramic composite transducers.
    Yihua H; Wenjin H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):218-34. PubMed ID: 23287927
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Nonuniform piezoelectric circular plate flexural transducers with underwater applications.
    Aronov BS
    J Acoust Soc Am; 2015 Sep; 138(3):1570-84. PubMed ID: 26428794
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials.
    Rdzanek WP
    J Acoust Soc Am; 2016 Jun; 139(6):3199. PubMed ID: 27369144
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Two-Dimensional Manipulation in Mid-Air Using a Single Transducer Acoustic Levitator.
    Wijaya H; Latifi K; Zhou Q
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 31003415
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Acoustic levitation of an object larger than the acoustic wavelength.
    Andrade MAB; Okina FTA; Bernassau AL; Adamowski JC
    J Acoust Soc Am; 2017 Jun; 141(6):4148. PubMed ID: 28618830
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A Low Frequency Broadband Flextensional Ultrasonic Transducer Array.
    Savoia AS; Mauti B; Caliano G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):128-38. PubMed ID: 26540680
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Development and study of novel non-contact ultrasonic motor based on principle of structural asymmetry.
    Stepanenko DA; Minchenya VT
    Ultrasonics; 2012 Sep; 52(7):866-72. PubMed ID: 22520741
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A two-layer linear piezoelectric micromotor.
    Li X; Ci P; Liu G; Dong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):405-11. PubMed ID: 25768809
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Mesh-free distributed point source method for modeling viscous fluid motion between disks vibrating at ultrasonic frequency.
    Wada Y; Kundu T; Nakamura K
    J Acoust Soc Am; 2014 Aug; 136(2):466-74. PubMed ID: 25096081
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells.
    Liu P; Tian Z; Hao N; Bachman H; Zhang P; Hu J; Huang TJ
    Lab Chip; 2020 Sep; 20(18):3399-3409. PubMed ID: 32779677
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Quantitative modeling of the transduction of electromagnetic acoustic transducers operating on ferromagnetic media.
    Ribichini R; Cegla F; Nagy PB; Cawley P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2808-17. PubMed ID: 21156376
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.
    Foresti D; Nabavi M; Poulikakos D
    J Acoust Soc Am; 2012 Feb; 131(2):1029-38. PubMed ID: 22352478
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Energy trapping in high-frequency vibrations of piezoelectric plates with partial mass layers under lateral electric field excitation.
    Liu B; Jiang Q; Xie H; Yang J
    Ultrasonics; 2011 Apr; 51(3):376-81. PubMed ID: 21145572
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.
    Shuyu L; Zhiqiang F; Xiaoli Z; Yong W; Jing H
    Ultrason Sonochem; 2013 Sep; 20(5):1161-7. PubMed ID: 23466008
    [TBL] [Abstract][Full Text] [Related]  

  • 100. An Ultrasonic Tweezer With Multiple Manipulation Functions Based on the Double-Parabolic-Reflector Wave-Guided High-Power Ultrasonic Transducer.
    Liu Q; Chen K; Hu J; Morita T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Nov; 67(11):2471-2474. PubMed ID: 32755855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.