These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20529719)

  • 1. Dependence of acoustic trapping capability on the orientation and shape of particles.
    Liu Y; Hu J; Zhao C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1443-50. PubMed ID: 20529719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic trapping of small particles by a vibrating rod.
    Liu Y; Hu J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):798-805. PubMed ID: 19406708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for investigating the behaviour of non-spherical particles at interfaces.
    Morris G; Neethling SJ; Cilliers JJ
    J Colloid Interface Sci; 2011 Feb; 354(1):380-5. PubMed ID: 21067767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping of microparticles in the near field of an ultrasonic transducer.
    Lilliehorn T; Simu U; Nilsson M; Almqvist M; Stepinski T; Laurell T; Nilsson J; Johansson S
    Ultrasonics; 2005 Mar; 43(5):293-303. PubMed ID: 15737379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary forces between sediment particles and an air-water interface.
    Chatterjee N; Lapin S; Flury M
    Environ Sci Technol; 2012 Apr; 46(8):4411-8. PubMed ID: 22423648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of particle shape on capillary forces acting on particles at the air-water interface.
    Chatterjee N; Flury M
    Langmuir; 2013 Jun; 29(25):7903-11. PubMed ID: 23721116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of temperature dependent acoustic trapping characteristics by using concentric annular type dual element ultrasonic transducer.
    Chung IY; Lee J
    Ultrasonics; 2015 Feb; 56():220-6. PubMed ID: 25106111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous suspensions of natural swelling clay minerals. 2. Rheological characterization.
    Paineau E; Michot LJ; Bihannic I; Baravian C
    Langmuir; 2011 Jun; 27(12):7806-19. PubMed ID: 21591697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of nano drug carriers towards optimum release rate.
    Ng EY; Ng WK
    J Med Eng Technol; 2007; 31(4):243-52. PubMed ID: 17566928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncontact ultrasonic transportation of small objects in a circular trajectory in air by flexural vibrations of a circular disc.
    Koyama D; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1434-42. PubMed ID: 20529718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector.
    Koyama D; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1152-9. PubMed ID: 20442026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems.
    Hammarström B; Laurell T; Nilsson J
    Lab Chip; 2012 Nov; 12(21):4296-304. PubMed ID: 22955667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays.
    Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J
    Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of biologic particles by pumping effect in a pi-shaped ultrasonic actuator.
    Hu J; Yang J; Xu J; Du J
    Ultrasonics; 2006 Dec; 45(1-4):15-21. PubMed ID: 16837019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic collection of small particles by a tapered metal strip.
    Hu J; Xu J; Yang J; Du J; Cai Y; Tay C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Mar; 53(3):571-8. PubMed ID: 16555765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pi-shaped ultrasonic tweezers concept for manipulation of small particles.
    Hu J; Santoso AK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1499-507. PubMed ID: 15600095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical trapping forces for colloids at the oil-water interface.
    Park BJ; Furst EM
    Langmuir; 2008 Dec; 24(23):13383-92. PubMed ID: 18980357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From rectangular to diamond shape: on the three-dimensional and size-dependent transformation of patterns formed by single particles trapped in microfluidic acoustic tweezers.
    Deng Z; Kondalkar VV; Cierpka C; Schmidt H; König J
    Lab Chip; 2023 May; 23(9):2154-2160. PubMed ID: 37013801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The directional sensitivity of the acoustic radiation force to particle diameter.
    Ran W; Saylor JR
    J Acoust Soc Am; 2015 Jun; 137(6):3288-98. PubMed ID: 26093419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.