These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20529753)

  • 1. A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer.
    Khan AM; Lee YK; Lee SY; Kim TS
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1166-72. PubMed ID: 20529753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets.
    Khan AM; Lee YK; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5172-5. PubMed ID: 19163882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single tri-axial accelerometer-based real-time personal life log system capable of activity classification and exercise information generation.
    Lee MW; Khan AM; Kim JH; Cho YS; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1390-3. PubMed ID: 21096339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing metabolic energy expenditure estimation using wearable multi-sensor network and single accelerometer.
    Dong B; Biswas S; Montoye A; Pfeiffer K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2866-9. PubMed ID: 24110325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring.
    Karantonis DM; Narayanan MR; Mathie M; Lovell NH; Celler BG
    IEEE Trans Inf Technol Biomed; 2006 Jan; 10(1):156-67. PubMed ID: 16445260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving activity recognition using temporal coherence.
    Ataya A; Jallon P; Bianchi P; Doron M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4215-8. PubMed ID: 24110662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of EMD in activity recognition based on a single triaxial accelerometer.
    Liao M; Guo Y; Qin Y; Wang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1533-9. PubMed ID: 26405917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.
    Khan AM; Lee YK; Lee S; Kim TS
    Med Biol Eng Comput; 2010 Dec; 48(12):1271-9. PubMed ID: 21052854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Homomorphic Analysis for Human Activity Recognition From Acceleration Signals.
    Vanrell SR; Milone DH; Rufiner HL; Vanrell SR; Milone DH; Rufiner HL
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):1001-1010. PubMed ID: 28682268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triaxial accelerometer-based fall detection method using a self-constructing cascade-AdaBoost-SVM classifier.
    Cheng WC; Jhan DM
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):411-9. PubMed ID: 24235113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using accelerometers for physical actions recognition by a neural fuzzy network.
    Liu SH; Chang YJ
    Telemed J E Health; 2009 Nov; 15(9):867-76. PubMed ID: 19919193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Event-Based Classification Accuracy in Pit-Drilling Operations: An Application by Neural Networks and Median Filtering of the Acceleration Input Signal Data.
    Castro Pérez SN; Borz SA
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. JIM: a novel and efficient accelerometric magnitude to measure physical activity.
    Carús JL; Peláez V; López G; Lobato V
    Stud Health Technol Inform; 2012; 177():283-8. PubMed ID: 22942068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Child activity recognition based on cooperative fusion model of a triaxial accelerometer and a barometric pressure sensor.
    Nam Y; Park JW
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):420-6. PubMed ID: 24235114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal physical activity recognition by fusing temporal and cepstral information.
    Li M; Rozgica V; Thatte G; Lee S; Emken A; Annavaram M; Mitra U; Spruijt-Metz D; Narayanan S
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):369-80. PubMed ID: 20699202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running.
    Wundersitz DW; Gastin PB; Richter C; Robertson SJ; Netto KJ
    Eur J Sport Sci; 2015; 15(5):382-90. PubMed ID: 25196466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speed estimation from a tri-axial accelerometer using neural networks.
    Song Y; Shin S; Kim S; Lee D; Lee KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3224-7. PubMed ID: 18002682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body.
    Arif M; Kattan A
    PLoS One; 2015; 10(7):e0130851. PubMed ID: 26203909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature selection and activity recognition system using a single triaxial accelerometer.
    Gupta P; Dallas T
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1780-6. PubMed ID: 24691526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.