These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20529753)

  • 21. User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach.
    Margarito J; Helaoui R; Bianchi AM; Sartor F; Bonomi AG
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):788-96. PubMed ID: 26302509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advancing from offline to online activity recognition with wearable sensors.
    Ermes M; Parkka J; Cluitmans L
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4451-4. PubMed ID: 19163702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hierarchical classifier approach to physical activity recognition via wearable smartphone tri-axial accelerometer.
    Yusuf F; Maeder A; Basilakis J
    Stud Health Technol Inform; 2013; 188():174-80. PubMed ID: 23823307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Respiratory signal derived from the smartphone built-in accelerometer during a Respiratory Load Protocol.
    Estrada L; Torres A; Sarlabous L; Jané R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6768-71. PubMed ID: 26737847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation.
    Lin CW; Yang YT; Wang JS; Yang YC
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):991-8. PubMed ID: 22875251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors.
    Wang Z; Jiang M; Hu Y; Li H
    IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):691-9. PubMed ID: 22614724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Longitudinal falls-risk estimation using triaxial accelerometry.
    Narayanan MR; Redmond SJ; Scalzi ME; Lord SR; Celler BG; Lovell Ast NH
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):534-41. PubMed ID: 19789094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry.
    Sant'anna A; Wickström N
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1180-7. PubMed ID: 20371410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parametric estimation of sample entropy for physical activity recognition.
    Aktaruzzaman M; Scarabottolo N; Sassi R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():470-3. PubMed ID: 26736301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating intensity of physical activity: a comparison of wearable accelerometer and gyro sensors and 3 sensor locations.
    Pärkkä J; Ermes M; Antila K; van Gils M; Mänttäri A; Nieminen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1511-4. PubMed ID: 18002254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Registration and Analysis of Acceleration Data to Recognize Physical Activity.
    Kołodziej M; Majkowski A; Tarnowski P; Rak RJ; Gebert D; Sawicki D
    J Healthc Eng; 2019; 2019():9497151. PubMed ID: 30944719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heart rate and accelerometer data fusion for activity assessment of rescuers during emergency interventions.
    Curone D; Tognetti A; Secco EL; Anania G; Carbonaro N; De Rossi D; Magenes G
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):702-10. PubMed ID: 20378475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SoM: a smart sensor for human activity monitoring and assisted healthy ageing.
    Naranjo-Hernández D; Roa LM; Reina-Tosina J; Estudillo-Valderrama MÁ
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3177-84. PubMed ID: 23086195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition.
    Ordóñez FJ; Roggen D
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26797612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inclination measurement of human movement using a 3-D accelerometer with autocalibration.
    Luinge HJ; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):112-21. PubMed ID: 15068194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of human ambulatory speed by measuring near-body air flow.
    Bonomi AG; Salati S
    Sensors (Basel); 2010; 10(9):8705-18. PubMed ID: 22163681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly accurate recognition of human postures and activities through classification with rejection.
    Tang W; Sazonov ES
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):309-15. PubMed ID: 24403429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unified framework for triaxial accelerometer-based fall event detection and classification using cumulants and hierarchical decision tree classifier.
    Kambhampati SS; Singh V; Manikandan MS; Ramkumar B
    Healthc Technol Lett; 2015 Aug; 2(4):101-7. PubMed ID: 26609414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.