BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 20529840)

  • 21. Role of an isoform-specific serine residue in FMN-heme electron transfer in inducible nitric oxide synthase.
    Li W; Fan W; Chen L; Elmore BO; Piazza M; Guillemette JG; Feng C
    J Biol Inorg Chem; 2012 Jun; 17(5):675-85. PubMed ID: 22407542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A cross-domain charge interaction governs the activity of NO synthase.
    Haque MM; Tejero J; Bayachou M; Kenney CT; Stuehr DJ
    J Biol Chem; 2018 Mar; 293(12):4545-4554. PubMed ID: 29414777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences in a conformational equilibrium distinguish catalysis by the endothelial and neuronal nitric-oxide synthase flavoproteins.
    Ilagan RP; Tiso M; Konas DW; Hemann C; Durra D; Hille R; Stuehr DJ
    J Biol Chem; 2008 Jul; 283(28):19603-15. PubMed ID: 18487202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron transfer is activated by calmodulin in the flavin domain of human neuronal nitric oxide synthase.
    Guan ZW; Iyanagi T
    Arch Biochem Biophys; 2003 Apr; 412(1):65-76. PubMed ID: 12646269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potentiometric analysis of the flavin cofactors of neuronal nitric oxide synthase.
    Noble MA; Munro AW; Rivers SL; Robledo L; Daff SN; Yellowlees LJ; Shimizu T; Sagami I; Guillemette JG; Chapman SK
    Biochemistry; 1999 Dec; 38(50):16413-8. PubMed ID: 10600101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential calmodulin-modulatory and electron transfer properties of neuronal nitric oxide synthase mu compared to the alpha variant.
    Panda SP; Li W; Venkatakrishnan P; Chen L; Astashkin AV; Masters BS; Feng C; Roman LJ
    FEBS Lett; 2013 Dec; 587(24):3973-8. PubMed ID: 24211446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calmodulin activates intersubunit electron transfer in the neuronal nitric-oxide synthase dimer.
    Panda K; Ghosh S; Stuehr DJ
    J Biol Chem; 2001 Jun; 276(26):23349-56. PubMed ID: 11325964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Azo reduction of methyl red by neuronal nitric oxide synthase: the important role of FMN in catalysis.
    Miyajima M; Sagami I; Daff S; Taiko Migita C; Shimizu T
    Biochem Biophys Res Commun; 2000 Sep; 275(3):752-8. PubMed ID: 10973794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformation-dependent hydride transfer in neuronal nitric oxide synthase reductase domain.
    Welland A; Daff S
    FEBS J; 2010 Sep; 277(18):3833-43. PubMed ID: 20718865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain.
    Stuehr DJ; Tejero J; Haque MM
    FEBS J; 2009 Aug; 276(15):3959-74. PubMed ID: 19583767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Architecture of the nitric-oxide synthase holoenzyme reveals large conformational changes and a calmodulin-driven release of the FMN domain.
    Yokom AL; Morishima Y; Lau M; Su M; Glukhova A; Osawa Y; Southworth DR
    J Biol Chem; 2014 Jun; 289(24):16855-65. PubMed ID: 24737326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of the FAD/NADPH-binding domain of rat neuronal nitric-oxide synthase. Comparisons with NADPH-cytochrome P450 oxidoreductase.
    Zhang J; Martàsek P; Paschke R; Shea T; Siler Masters BS; Kim JJ
    J Biol Chem; 2001 Oct; 276(40):37506-13. PubMed ID: 11473123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy landscapes and catalysis in nitric-oxide synthase.
    Sobolewska-Stawiarz A; Leferink NGH; Fisher K; Heyes DJ; Hay S; Rigby SEJ; Scrutton NS
    J Biol Chem; 2014 Apr; 289(17):11725-11738. PubMed ID: 24610812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A conserved aspartate (Asp-1393) regulates NADPH reduction of neuronal nitric-oxide synthase: implications for catalysis.
    Panda K; Adak S; Konas D; Sharma M; Stuehr DJ
    J Biol Chem; 2004 Apr; 279(18):18323-33. PubMed ID: 14966111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calmodulin activates intramolecular electron transfer between the two flavins of neuronal nitric oxide synthase flavin domain.
    Matsuda H; Iyanagi T
    Biochim Biophys Acta; 1999 Dec; 1473(2-3):345-55. PubMed ID: 10594372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lys842 in neuronal nitric-oxide synthase enables the autoinhibitory insert to antagonize calmodulin binding, increase FMN shielding, and suppress interflavin electron transfer.
    Guan ZW; Haque MM; Wei CC; Garcin ED; Getzoff ED; Stuehr DJ
    J Biol Chem; 2010 Jan; 285(5):3064-75. PubMed ID: 19948738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calmodulin activates electron transfer through neuronal nitric-oxide synthase reductase domain by releasing an NADPH-dependent conformational lock.
    Craig DH; Chapman SK; Daff S
    J Biol Chem; 2002 Sep; 277(37):33987-94. PubMed ID: 12089147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Restricting the conformational freedom of the neuronal nitric-oxide synthase flavoprotein domain reveals impact on electron transfer and catalysis.
    Dai Y; Haque MM; Stuehr DJ
    J Biol Chem; 2017 Apr; 292(16):6753-6764. PubMed ID: 28232486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards the free energy landscape for catalysis in mammalian nitric oxide synthases.
    Leferink NG; Hay S; Rigby SE; Scrutton NS
    FEBS J; 2015 Aug; 282(16):3016-29. PubMed ID: 25491181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.