BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 20529887)

  • 1. Molecular dissection of the pathogen-inducible 3-deoxyanthocyanidin biosynthesis pathway in sorghum.
    Liu H; Du Y; Chu H; Shih CH; Wong YW; Wang M; Chu IK; Tao Y; Lo C
    Plant Cell Physiol; 2010 Jul; 51(7):1173-85. PubMed ID: 20529887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum.
    Du Y; Chu H; Wang M; Chu IK; Lo C
    J Exp Bot; 2010 Feb; 61(4):983-94. PubMed ID: 20007684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in Sorghum bicolor.
    Ibraheem F; Gaffoor I; Chopra S
    Genetics; 2010 Apr; 184(4):915-26. PubMed ID: 20083611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1.
    Bovy A; de Vos R; Kemper M; Schijlen E; Almenar Pertejo M; Muir S; Collins G; Robinson S; Verhoeyen M; Hughes S; Santos-Buelga C; van Tunen A
    Plant Cell; 2002 Oct; 14(10):2509-26. PubMed ID: 12368501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anthocyanin regulatory mutations in pea: effects on gene expression and complementation by R-like genes of maize.
    Uimari A; Strommer J
    Mol Gen Genet; 1998 Jan; 257(2):198-204. PubMed ID: 9491078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the Sorghum brown midrib6 phenotype.
    Sattler SE; Saathoff AJ; Haas EJ; Palmer NA; Funnell-Harris DL; Sarath G; Pedersen JF
    Plant Physiol; 2009 Jun; 150(2):584-95. PubMed ID: 19363091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genes up-regulated during red coloration in UV-B irradiated lettuce leaves.
    Park JS; Choung MG; Kim JB; Hahn BS; Kim JB; Bae SC; Roh KH; Kim YH; Cheon CI; Sung MK; Cho KJ
    Plant Cell Rep; 2007 Apr; 26(4):507-16. PubMed ID: 17086420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arg-type dihydroflavonol 4-reductase genes from the fern Dryopteris erythrosora play important roles in the biosynthesis of anthocyanins.
    Chen X; Liu W; Huang X; Fu H; Wang Q; Wang Y; Cao J
    PLoS One; 2020; 15(5):e0232090. PubMed ID: 32357153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthocyanin synthesis potential in betalain-producing Caryophyllales plants.
    Sakuta M; Tanaka A; Iwase K; Miyasaka M; Ichiki S; Hatai M; Inoue YT; Yamagami A; Nakano T; Yoshida K; Shimada S
    J Plant Res; 2021 Nov; 134(6):1335-1349. PubMed ID: 34477986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient production of anthocyanins in
    Xu S; Li G; Zhou J; Chen G; Shao J
    Front Bioeng Biotechnol; 2022; 10():899182. PubMed ID: 36061422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis.
    Liu CJ; Blount JW; Steele CL; Dixon RA
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14578-83. PubMed ID: 12384577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The draft genome of Ruellia speciosa (Beautiful Wild Petunia: Acanthaceae).
    Zhuang Y; Tripp EA
    DNA Res; 2017 Apr; 24(2):179-192. PubMed ID: 28431014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular identification of a flavone synthase I/flavanone 3β-hydroxylase bifunctional enzyme from fern species Psilotum nudum.
    Fu J; Wang PY; Ni R; Zhang JZ; Zhu TT; Tan H; Zhang J; Lou HX; Cheng AX
    Plant Sci; 2023 Apr; 329():111599. PubMed ID: 36682585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of brown-midrib in a spontaneous sorghum mutant is linked to a 5'-UTR deletion in lignin biosynthesis gene SbCAD2.
    Li H; Huang Y
    Sci Rep; 2017 Sep; 7(1):11664. PubMed ID: 28916814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosyltransferase efficiently controls phenylpropanoid pathway.
    Aksamit-Stachurska A; Korobczak-Sosna A; Kulma A; Szopa J
    BMC Biotechnol; 2008 Mar; 8():25. PubMed ID: 18321380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational study on a puzzle in the biosynthetic pathway of anthocyanin: Why is an enzymatic oxidation/ reduction process required for a simple tautomerization?
    Sato H; Wang C; Yamazaki M; Saito K; Uchiyama M
    PLoS One; 2018; 13(6):e0198944. PubMed ID: 29897974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Characterization of a Stereoselective and Promiscuous Flavanone 3-Hydroxylase from
    Sui S; Xie K; Guo R; Dai J; Yang L
    J Agric Food Chem; 2023 Jan; 71(3):1679-1689. PubMed ID: 36633228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast-based system for in vivo evaluation of alleles of the anthocyanin production pathway.
    Tamošiūnas PL; Pērkons I; Kukk K
    World J Microbiol Biotechnol; 2023 Apr; 39(6):156. PubMed ID: 37039815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A complete assembly of the sorghum BTx623 reference genome.
    Deng Y; Zhou P; Li F; Wang J; Xie K; Liang H; Wang C; Liu B; Zhu Z; Zhou W; Dun B; Lu X; Diao X; He Q
    Plant Commun; 2024 Jun; 5(6):100977. PubMed ID: 38751118
    [No Abstract]   [Full Text] [Related]  

  • 20. Structural Similarities and Overlapping Activities among Dihydroflavonol 4-Reductase, Flavanone 4-Reductase, and Anthocyanidin Reductase Offer Metabolic Flexibility in the Flavonoid Pathway.
    Lewis JA; Zhang B; Harza R; Palmer N; Sarath G; Sattler SE; Twigg P; Vermerris W; Kang C
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.