BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20529925)

  • 1. A dynamic Bayesian network for identifying protein-binding footprints from single molecule-based sequencing data.
    Chen X; Hoffman MM; Bilmes JA; Hesselberth JR; Noble WS
    Bioinformatics; 2010 Jun; 26(12):i334-42. PubMed ID: 20529925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting.
    Hesselberth JR; Chen X; Zhang Z; Sabo PJ; Sandstrom R; Reynolds AP; Thurman RE; Neph S; Kuehn MS; Noble WS; Fields S; Stamatoyannopoulos JA
    Nat Methods; 2009 Apr; 6(4):283-9. PubMed ID: 19305407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survey of protein-DNA interactions in Aspergillus oryzae on a genomic scale.
    Wang C; Lv Y; Wang B; Yin C; Lin Y; Pan L
    Nucleic Acids Res; 2015 May; 43(9):4429-46. PubMed ID: 25883143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
    Quach B; Furey TS
    Bioinformatics; 2017 Apr; 33(7):956-963. PubMed ID: 27993786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells.
    Boyle AP; Song L; Lee BK; London D; Keefe D; Birney E; Iyer VR; Crawford GE; Furey TS
    Genome Res; 2011 Mar; 21(3):456-64. PubMed ID: 21106903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MYBS: a comprehensive web server for mining transcription factor binding sites in yeast.
    Tsai HK; Chou MY; Shih CH; Huang GT; Chang TH; Li WH
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W221-6. PubMed ID: 17537814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae.
    Yarragudi A; Parfrey LW; Morse RH
    Nucleic Acids Res; 2007; 35(1):193-202. PubMed ID: 17158163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian hidden Markov model for motif discovery through joint modeling of genomic sequence and ChIP-chip data.
    Gelfond JA; Gupta M; Ibrahim JG
    Biometrics; 2009 Dec; 65(4):1087-95. PubMed ID: 19210737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolving diverse protein-DNA footprints from exonuclease-based ChIP experiments.
    Biswas A; Narlikar L
    Bioinformatics; 2021 Jul; 37(Suppl_1):i367-i375. PubMed ID: 34252930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila DNase I footprint database: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster.
    Bergman CM; Carlson JW; Celniker SE
    Bioinformatics; 2005 Apr; 21(8):1747-9. PubMed ID: 15572468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transdimensional Bayesian model for pattern recognition in DNA sequences.
    Li SM; Wakefield J; Self S
    Biostatistics; 2008 Oct; 9(4):668-85. PubMed ID: 18349034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints.
    He Q; Johnston J; Zeitlinger J
    Nat Biotechnol; 2015 Apr; 33(4):395-401. PubMed ID: 25751057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method for identifying transcription factor binding sites in yeast.
    Tsai HK; Huang GT; Chou MY; Lu HH; Li WH
    Bioinformatics; 2006 Jul; 22(14):1675-81. PubMed ID: 16644789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CUT&RUNTools: a flexible pipeline for CUT&RUN processing and footprint analysis.
    Zhu Q; Liu N; Orkin SH; Yuan GC
    Genome Biol; 2019 Sep; 20(1):192. PubMed ID: 31500663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide expression profiling, in vivo DNA binding analysis, and probabilistic motif prediction reveal novel Abf1 target genes during fermentation, respiration, and sporulation in yeast.
    Schlecht U; Erb I; Demougin P; Robine N; Borde V; van Nimwegen E; Nicolas A; Primig M
    Mol Biol Cell; 2008 May; 19(5):2193-207. PubMed ID: 18305101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting functional transcription factor binding through alignment-free and affinity-based analysis of orthologous promoter sequences.
    Ward LD; Bussemaker HJ
    Bioinformatics; 2008 Jul; 24(13):i165-71. PubMed ID: 18586710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding functional features in Saccharomyces genomes by phylogenetic footprinting.
    Cliften P; Sudarsanam P; Desikan A; Fulton L; Fulton B; Majors J; Waterston R; Cohen BA; Johnston M
    Science; 2003 Jul; 301(5629):71-6. PubMed ID: 12775844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.