These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 20529927)

  • 21. InFiRe -- a novel computational method for the identification of insertion sites in transposon mutagenized bacterial genomes.
    Shevchuk O; Roselius L; Günther G; Klein J; Jahn D; Steinert M; Münch R
    Bioinformatics; 2012 Feb; 28(3):306-10. PubMed ID: 22155866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural variants in 3000 rice genomes.
    Fuentes RR; Chebotarov D; Duitama J; Smith S; De la Hoz JF; Mohiyuddin M; Wing RA; McNally KL; Tatarinova T; Grigoriev A; Mauleon R; Alexandrov N
    Genome Res; 2019 May; 29(5):870-880. PubMed ID: 30992303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. piPipes: a set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and genomic DNA sequencing.
    Han BW; Wang W; Zamore PD; Weng Z
    Bioinformatics; 2015 Feb; 31(4):593-5. PubMed ID: 25342065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of multiple algorithms to reliably detect structural variants in pears.
    Liu Y; Zhang M; Sun J; Chang W; Sun M; Zhang S; Wu J
    BMC Genomics; 2020 Jan; 21(1):61. PubMed ID: 31959124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterizing and interpreting genetic variation from personal genome sequencing.
    Johansson AC; Feuk L
    Methods Mol Biol; 2012; 838():343-67. PubMed ID: 22228021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leveraging known genomic variants to improve detection of variants, especially close-by Indels.
    Vo NS; Phan V
    Bioinformatics; 2018 Sep; 34(17):2918-2926. PubMed ID: 29590294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ERVcaller: identifying polymorphic endogenous retrovirus and other transposable element insertions using whole-genome sequencing data.
    Chen X; Li D
    Bioinformatics; 2019 Oct; 35(20):3913-3922. PubMed ID: 30895294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MUM&Co: accurate detection of all SV types through whole-genome alignment.
    O'Donnell S; Fischer G
    Bioinformatics; 2020 May; 36(10):3242-3243. PubMed ID: 32096823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cost-Effective Profiling of Mutator Transposon Insertions in Maize by Next-Generation Sequencing.
    Zhang X; Zhao M; Lisch D
    Methods Mol Biol; 2020; 2072():39-50. PubMed ID: 31541437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An algorithm for the reconstruction of consensus sequences of ancient segmental duplications and transposon copies in eukaryotic genomes.
    Singh A; Keswani U; Levine D; Feschotte C;
    Int J Bioinform Res Appl; 2010; 6(2):147-62. PubMed ID: 20223737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toolkit for automated and rapid discovery of structural variants.
    Soylev A; Kockan C; Hormozdiari F; Alkan C
    Methods; 2017 Oct; 129():3-7. PubMed ID: 28583483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assembling short reads from jumping libraries with large insert sizes.
    Vasilinetc I; Prjibelski AD; Gurevich A; Korobeynikov A; Pevzner PA
    Bioinformatics; 2015 Oct; 31(20):3262-8. PubMed ID: 26040456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural variation discovery in the cancer genome using next generation sequencing: computational solutions and perspectives.
    Liu B; Conroy JM; Morrison CD; Odunsi AO; Qin M; Wei L; Trump DL; Johnson CS; Liu S; Wang J
    Oncotarget; 2015 Mar; 6(8):5477-89. PubMed ID: 25849937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RAPTR-SV: a hybrid method for the detection of structural variants.
    Bickhart DM; Hutchison JL; Xu L; Schnabel RD; Taylor JF; Reecy JM; Schroeder S; Van Tassell CP; Sonstegard TS; Liu GE
    Bioinformatics; 2015 Jul; 31(13):2084-90. PubMed ID: 25686638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A zero-inflated Poisson model for insertion tolerance analysis of genes based on Tn-seq data.
    Liu F; Wang C; Wu Z; Zhang Q; Liu P
    Bioinformatics; 2016 Jun; 32(11):1701-8. PubMed ID: 26833344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of Next Generation Sequencing (NGS) technologies for the genome-wide detection of transposition.
    Elbaidouri M; Chaparro C; Panaud O
    Methods Mol Biol; 2013; 1057():265-74. PubMed ID: 23918435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative analysis of algorithms for next-generation sequencing read alignment.
    Ruffalo M; LaFramboise T; Koyutürk M
    Bioinformatics; 2011 Oct; 27(20):2790-6. PubMed ID: 21856737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SVIM-asm: structural variant detection from haploid and diploid genome assemblies.
    Heller D; Vingron M
    Bioinformatics; 2021 Apr; 36(22-23):5519-5521. PubMed ID: 33346817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. REDHORSE-REcombination and Double crossover detection in Haploid Organisms using next-geneRation SEquencing data.
    Shaik JS; Khan A; Beverley SM; Sibley LD
    BMC Genomics; 2015 Feb; 16(1):133. PubMed ID: 25766039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome.
    Faino L; Seidl MF; Datema E; van den Berg GC; Janssen A; Wittenberg AH; Thomma BP
    mBio; 2015 Aug; 6(4):. PubMed ID: 26286689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.