These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20529936)

  • 1. SPEX2: automated concise extraction of spatial gene expression patterns from Fly embryo ISH images.
    Puniyani K; Faloutsos C; Xing EP
    Bioinformatics; 2010 Jun; 26(12):i47-56. PubMed ID: 20529936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GINI: from ISH images to gene interaction networks.
    Puniyani K; Xing EP
    PLoS Comput Biol; 2013; 9(10):e1003227. PubMed ID: 24130465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic image analysis for gene expression patterns of fly embryos.
    Peng H; Long F; Zhou J; Leung G; Eisen MB; Myers EW
    BMC Cell Biol; 2007 Jul; 8 Suppl 1(Suppl 1):S7. PubMed ID: 17634097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic recognition and annotation of gene expression patterns of fly embryos.
    Zhou J; Peng H
    Bioinformatics; 2007 Mar; 23(5):589-96. PubMed ID: 17237064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FuncISH: learning a functional representation of neural ISH images.
    Liscovitch N; Shalit U; Chechik G
    Bioinformatics; 2013 Jul; 29(13):i36-43. PubMed ID: 23813005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated annotation of gene expression image sequences via non-parametric factor analysis and conditional random fields.
    Pruteanu-Malinici I; Majoros WH; Ohler U
    Bioinformatics; 2013 Jul; 29(13):i27-35. PubMed ID: 23812993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.
    Crombach A; Cicin-Sain D; Wotton KR; Jaeger J
    PLoS One; 2012; 7(9):e46658. PubMed ID: 23029561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction and comparison of gene expression patterns from 2D RNA in situ hybridization images.
    Mace DL; Varnado N; Zhang W; Frise E; Ohler U
    Bioinformatics; 2010 Mar; 26(6):761-9. PubMed ID: 19942587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint stage recognition and anatomical annotation of Drosophila gene expression patterns.
    Cai X; Wang H; Huang H; Ding C
    Bioinformatics; 2012 Jun; 28(12):i16-24. PubMed ID: 22689756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated annotation of developmental stages of Drosophila embryos in images containing spatial patterns of expression.
    Yuan L; Pan C; Ji S; McCutchan M; Zhou ZH; Newfeld SJ; Kumar S; Ye J
    Bioinformatics; 2014 Jan; 30(2):266-73. PubMed ID: 24300439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatically identifying and annotating mouse embryo gene expression patterns.
    Han L; van Hemert JI; Baldock RA
    Bioinformatics; 2011 Apr; 27(8):1101-7. PubMed ID: 21357576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A methodology to infer gene networks from spatial patterns of expression--an application to fluorescence in situ hybridization images.
    Campiteli MG; Comin CH; Costa Lda F; Babu MM; Cesar RM
    Mol Biosyst; 2013 Jul; 9(7):1926-30. PubMed ID: 23591446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AnnoFly: annotating Drosophila embryonic images based on an attention-enhanced RNN model.
    Yang Y; Zhou M; Fang Q; Shen HB
    Bioinformatics; 2019 Aug; 35(16):2834-2842. PubMed ID: 30601935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of gene expression patterns using high-throughput RNA in situ hybridization to whole-mount Drosophila embryos.
    Weiszmann R; Hammonds AS; Celniker SE
    Nat Protoc; 2009; 4(5):605-18. PubMed ID: 19360017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New methods for computational decomposition of whole-mount in situ images enable effective curation of a large, highly redundant collection of Xenopus images.
    Patrushev I; James-Zorn C; Ciau-Uitz A; Patient R; Gilchrist MJ
    PLoS Comput Biol; 2018 Aug; 14(8):e1006077. PubMed ID: 30157169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mesh generation and machine learning framework for Drosophila gene expression pattern image analysis.
    Zhang W; Feng D; Li R; Chernikov A; Chrisochoides N; Osgood C; Konikoff C; Newfeld S; Kumar S; Ji S
    BMC Bioinformatics; 2013 Dec; 14():372. PubMed ID: 24373308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative imaging of gene expression in Drosophila embryos.
    Surkova S; Myasnikova E; Kozlov KN; Pisarev A; Reinitz J; Samsonova M
    Cold Spring Harb Protoc; 2013 Jun; 2013(6):488-97. PubMed ID: 23734022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image processing and analysis for quantifying gene expression from early Drosophila embryos.
    Ay A; Fakhouri WD; Chiu C; Arnosti DN
    Tissue Eng Part A; 2008 Sep; 14(9):1517-26. PubMed ID: 18687054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering.
    Jagalur M; Pal C; Learned-Miller E; Zoeller RT; Kulp D
    BMC Bioinformatics; 2007; 8 Suppl 10(Suppl 10):S5. PubMed ID: 18269699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FlyIT: Drosophila Embryogenesis Image Annotation based on Image Tiling and Convolutional Neural Networks.
    Long W; Li T; Yang Y; Shen HB
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):194-204. PubMed ID: 31425122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.