These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 20530872)

  • 61. Caveolin-1 and ATP binding cassette transporter A1 and G1-mediated cholesterol efflux.
    Wang F; Gu HM; Zhang DW
    Cardiovasc Hematol Disord Drug Targets; 2014; 14(2):142-8. PubMed ID: 24801727
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Overexpression of human ABCG1 does not affect atherosclerosis in fat-fed ApoE-deficient mice.
    Burgess B; Naus K; Chan J; Hirsch-Reinshagen V; Tansley G; Matzke L; Chan B; Wilkinson A; Fan J; Donkin J; Balik D; Tanaka T; Ou G; Dyer R; Innis S; McManus B; Lütjohann D; Wellington C
    Arterioscler Thromb Vasc Biol; 2008 Oct; 28(10):1731-7. PubMed ID: 18599800
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Adipocyte modulation of high-density lipoprotein cholesterol.
    Zhang Y; McGillicuddy FC; Hinkle CC; O'Neill S; Glick JM; Rothblat GH; Reilly MP
    Circulation; 2010 Mar; 121(11):1347-55. PubMed ID: 20212278
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism.
    Zhou X; He W; Huang Z; Gotto AM; Hajjar DP; Han J
    J Biol Chem; 2008 Jan; 283(4):2129-38. PubMed ID: 18029360
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Critical Role of the Human ATP-Binding Cassette G1 Transporter in Cardiometabolic Diseases.
    Hardy LM; Frisdal E; Le Goff W
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28869506
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cognition, learning behaviour and hippocampal synaptic plasticity are not disrupted in mice over-expressing the cholesterol transporter ABCG1.
    Parkinson PF; Kannangara TS; Eadie BD; Burgess BL; Wellington CL; Christie BR
    Lipids Health Dis; 2009 Feb; 8():5. PubMed ID: 19239689
    [TBL] [Abstract][Full Text] [Related]  

  • 67. MEK1/2 inhibitors activate macrophage ABCG1 expression and reverse cholesterol transport-An anti-atherogenic function of ERK1/2 inhibition.
    Zhang L; Chen Y; Yang X; Yang J; Cao X; Li X; Li L; Miao QR; Hajjar DP; Duan Y; Han J
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt A):1180-1191. PubMed ID: 27365310
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of 6-O-α-maltosyl-β cyclodextrin and its cholesterol inclusion complex on cellular cholesterol levels and ABCA1 and ABCG1 expression in mouse mastocytoma P-815 cells.
    Okada Y; Ueyama K; Nishikawa J; Semma M; Ichikawa A
    Carbohydr Res; 2012 Aug; 357():68-74. PubMed ID: 22677519
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The E3 ubiquitin ligases, HUWE1 and NEDD4-1, are involved in the post-translational regulation of the ABCG1 and ABCG4 lipid transporters.
    Aleidi SM; Howe V; Sharpe LJ; Yang A; Rao G; Brown AJ; Gelissen IC
    J Biol Chem; 2015 Oct; 290(40):24604-13. PubMed ID: 26296893
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Adiponectin increases macrophages cholesterol efflux and suppresses foam cell formation in patients with type 2 diabetes mellitus.
    Wang M; Wang D; Zhang Y; Wang X; Liu Y; Xia M
    Atherosclerosis; 2013 Jul; 229(1):62-70. PubMed ID: 23466101
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The type 2 diabetes gene product STARD10 is a phosphoinositide-binding protein that controls insulin secretory granule biogenesis.
    Carrat GR; Haythorne E; Tomas A; Haataja L; Müller A; Arvan P; Piunti A; Cheng K; Huang M; Pullen TJ; Georgiadou E; Stylianides T; Amirruddin NS; Salem V; Distaso W; Cakebread A; Heesom KJ; Lewis PA; Hodson DJ; Briant LJ; Fung ACH; Sessions RB; Alpy F; Kong APS; Benke PI; Torta F; Teo AKK; Leclerc I; Solimena M; Wigley DB; Rutter GA
    Mol Metab; 2020 Oct; 40():101015. PubMed ID: 32416313
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice.
    Malur A; Huizar I; Wells G; Barna BP; Malur AG; Thomassen MJ
    Biochem Biophys Res Commun; 2011 Nov; 415(2):288-93. PubMed ID: 22033401
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Stimulation of cholesterol efflux by LXR agonists in cholesterol-loaded human macrophages is ABCA1-dependent but ABCG1-independent.
    Larrede S; Quinn CM; Jessup W; Frisdal E; Olivier M; Hsieh V; Kim MJ; Van Eck M; Couvert P; Carrie A; Giral P; Chapman MJ; Guerin M; Le Goff W
    Arterioscler Thromb Vasc Biol; 2009 Nov; 29(11):1930-6. PubMed ID: 19729607
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cloning and functional expression of novel cholesterol transporters ABCG1 and ABCG4 in gonadotropin-releasing hormone neurons of the tilapia.
    Phang YL; Soga T; Kitahashi T; Parhar IS
    Neuroscience; 2012 Feb; 203():39-49. PubMed ID: 22198513
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Coenzyme Q10 consumption promotes ABCG1-mediated macrophage cholesterol efflux: a randomized, double-blind, placebo-controlled, cross-over study in healthy volunteers.
    Yan X; Shen T; Jiang X; Tang X; Wang D; Li H; Ling W
    Mol Nutr Food Res; 2015 Sep; 59(9):1725-34. PubMed ID: 26081100
    [TBL] [Abstract][Full Text] [Related]  

  • 76. PMP22 Regulates Cholesterol Trafficking and ABCA1-Mediated Cholesterol Efflux.
    Zhou Y; Miles JR; Tavori H; Lin M; Khoshbouei H; Borchelt DR; Bazick H; Landreth GE; Lee S; Fazio S; Notterpek L
    J Neurosci; 2019 Jul; 39(27):5404-5418. PubMed ID: 31061090
    [TBL] [Abstract][Full Text] [Related]  

  • 77. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation.
    Kennedy MA; Barrera GC; Nakamura K; Baldán A; Tarr P; Fishbein MC; Frank J; Francone OL; Edwards PA
    Cell Metab; 2005 Feb; 1(2):121-31. PubMed ID: 16054053
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cholesterol toxicity in pancreatic islets from LDL receptor-deficient mice.
    de Souza JC; de Oliveira CA; Carneiro EM; Boschero AC; de Oliveira HC
    Diabetologia; 2010 Nov; 53(11):2461-2; author reply 2463-4. PubMed ID: 20694455
    [No Abstract]   [Full Text] [Related]  

  • 79. Cholesterol in beta-cell dysfunction: the emerging connection between HDL cholesterol and type 2 diabetes.
    Brunham LR; Kruit JK; Hayden MR; Verchere CB
    Curr Diab Rep; 2010 Feb; 10(1):55-60. PubMed ID: 20425068
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cholesterol Redistribution in Pancreatic β-Cells: A Flexible Path to Regulate Insulin Secretion.
    Galli A; Arunagiri A; Dule N; Castagna M; Marciani P; Perego C
    Biomolecules; 2023 Jan; 13(2):. PubMed ID: 36830593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.