BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20530876)

  • 1. Conditional ablation of Ikkb inhibits melanoma tumor development in mice.
    Yang J; Splittgerber R; Yull FE; Kantrow S; Ayers GD; Karin M; Richmond A
    J Clin Invest; 2010 Jul; 120(7):2563-74. PubMed ID: 20530876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel NF-kappaB pathway involving IKKbeta and p65/RelA Ser-536 phosphorylation results in p53 Inhibition in the absence of NF-kappaB transcriptional activity.
    Jeong SJ; Pise-Masison CA; Radonovich MF; Park HU; Brady JN
    J Biol Chem; 2005 Mar; 280(11):10326-32. PubMed ID: 15611068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic targeting inhibitor of kappaB kinase inhibits melanoma tumor growth.
    Yang J; Pan WH; Clawson GA; Richmond A
    Cancer Res; 2007 Apr; 67(7):3127-34. PubMed ID: 17409419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of p53 is a novel mechanism for proapoptotic function of NF-kappaB.
    Fujioka S; Schmidt C; Sclabas GM; Li Z; Pelicano H; Peng B; Yao A; Niu J; Zhang W; Evans DB; Abbruzzese JL; Huang P; Chiao PJ
    J Biol Chem; 2004 Jun; 279(26):27549-59. PubMed ID: 15102862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive IkappaB kinase activity correlates with nuclear factor-kappaB activation in human melanoma cells.
    Yang J; Richmond A
    Cancer Res; 2001 Jun; 61(12):4901-9. PubMed ID: 11406569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-Phosphoinositide-dependent protein kinase-1-mediated IkappaB kinase beta (IkkB) phosphorylation activates NF-kappaB signaling.
    Tanaka H; Fujita N; Tsuruo T
    J Biol Chem; 2005 Dec; 280(49):40965-73. PubMed ID: 16207722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirement of the NF-kappaB subunit p65/RelA for K-Ras-induced lung tumorigenesis.
    Bassères DS; Ebbs A; Levantini E; Baldwin AS
    Cancer Res; 2010 May; 70(9):3537-46. PubMed ID: 20406971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of polo-like kinase 3 in NF-kappaB-mediated proapoptotic response.
    Li Z; Niu J; Uwagawa T; Peng B; Chiao PJ
    J Biol Chem; 2005 Apr; 280(17):16843-50. PubMed ID: 15671037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual inactivation of RB and p53 pathways in RAS-induced melanomas.
    Bardeesy N; Bastian BC; Hezel A; Pinkel D; DePinho RA; Chin L
    Mol Cell Biol; 2001 Mar; 21(6):2144-53. PubMed ID: 11238948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of NF-kappaB1 by OX40 contributes to antigen-driven T cell expansion and survival.
    Song J; So T; Croft M
    J Immunol; 2008 Jun; 180(11):7240-8. PubMed ID: 18490723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells.
    Yang L; Zhou Y; Li Y; Zhou J; Wu Y; Cui Y; Yang G; Hong Y
    Cancer Lett; 2015 Feb; 357(2):520-6. PubMed ID: 25499080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KINK-1, a novel small-molecule inhibitor of IKKbeta, and the susceptibility of melanoma cells to antitumoral treatment.
    Schön M; Wienrich BG; Kneitz S; Sennefelder H; Amschler K; Vöhringer V; Weber O; Stiewe T; Ziegelbauer K; Schön MP
    J Natl Cancer Inst; 2008 Jun; 100(12):862-75. PubMed ID: 18544741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation.
    Kawauchi K; Araki K; Tobiume K; Tanaka N
    Nat Cell Biol; 2008 May; 10(5):611-8. PubMed ID: 18391940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of IKKbeta activity increases p53 stability and p21 expression leading to cell cycle arrest and apoptosis.
    Yang PM; Huang WC; Lin YC; Huang WY; Wu HA; Chen WL; Chang YF; Chou CW; Tzeng CC; Chen YL; Chen CC
    J Cell Mol Med; 2010 Mar; 14(3):687-98. PubMed ID: 19243472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear factor-(kappa)B modulates the p53 response in neurons exposed to DNA damage.
    Aleyasin H; Cregan SP; Iyirhiaro G; O'Hare MJ; Callaghan SM; Slack RS; Park DS
    J Neurosci; 2004 Mar; 24(12):2963-73. PubMed ID: 15044535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cdk2 and Cdk4 activities are dispensable for tumorigenesis caused by the loss of p53.
    Padmakumar VC; Aleem E; Berthet C; Hilton MB; Kaldis P
    Mol Cell Biol; 2009 May; 29(10):2582-93. PubMed ID: 19307310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated constitutive IkappaB kinase activity and IkappaB-alpha phosphorylation in Hs294T melanoma cells lead to increased basal MGSA/GRO-alpha transcription.
    Devalaraja MN; Wang DZ; Ballard DW; Richmond A
    Cancer Res; 1999 Mar; 59(6):1372-7. PubMed ID: 10096573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiapoptotic effect of serum and glucocorticoid-inducible protein kinase is mediated by novel mechanism activating I{kappa}B kinase.
    Zhang L; Cui R; Cheng X; Du J
    Cancer Res; 2005 Jan; 65(2):457-64. PubMed ID: 15695387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of I(kappa)B kinase complex by phosphorylation of (gamma)-binding domain of I(kappa)B kinase (beta) by Polo-like kinase 1.
    Higashimoto T; Chan N; Lee YK; Zandi E
    J Biol Chem; 2008 Dec; 283(51):35354-67. PubMed ID: 18957422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells.
    Abe N; Hou DX; Munemasa S; Murata Y; Nakamura Y
    Cell Death Dis; 2014 Nov; 5(11):e1534. PubMed ID: 25412312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.