BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20531234)

  • 1. Role of phosphatase and tensin homolog in the development of the mammalian auditory system.
    Dong Y; Sui L; Yamaguchi F; Kamitori K; Hirata Y; Suzuki A; Holley M; Tokuda M
    Neuroreport; 2010 Jul; 21(10):731-5. PubMed ID: 20531234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The expression of PTEN in the development of mouse cochlear lateral wall.
    Dong Y; Sui L; Yamaguchi F; Kamitori K; Hirata Y; Hossain A; Noguchi C; Katagi A; Nishio M; Suzuki A; Lou X; Tokuda M
    Neuroscience; 2014 Jan; 258():263-9. PubMed ID: 24252318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatase and tensin homolog deleted on chromosome 10 regulates sensory cell proliferation and differentiation of hair bundles in the mammalian cochlea.
    Dong Y; Sui L; Yamaguchi F; Kamitori K; Hirata Y; Hossain MA; Suzuki A; Holley MC; Tokuda M
    Neuroscience; 2010 Nov; 170(4):1304-13. PubMed ID: 20727948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Expression of Sox2, Gata3, and Prox1 during Primary Auditory Neuron Development in the Mammalian Cochlea.
    Nishimura K; Noda T; Dabdoub A
    PLoS One; 2017; 12(1):e0170568. PubMed ID: 28118374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental regulation of TRPC3 ion channel expression in the mouse cochlea.
    Phan PA; Tadros SF; Kim Y; Birnbaumer L; Housley GD
    Histochem Cell Biol; 2010 Apr; 133(4):437-48. PubMed ID: 20229053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GATA3 is downregulated during hair cell differentiation in the mouse cochlea.
    Rivolta MN; Holley MC
    J Neurocytol; 1998 Sep; 27(9):637-47. PubMed ID: 10447238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental regulation of spontaneous activity in the Mammalian cochlea.
    Tritsch NX; Bergles DE
    J Neurosci; 2010 Jan; 30(4):1539-50. PubMed ID: 20107081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PC3 is involved in the shift from proliferation to differentiation and maturation in spiral ganglion neurons.
    Hayashida M; Minoda R; Shinmyo Y; Ohta K; Tanaka H; Yumoto E
    Neuroreport; 2010 Jan; 21(2):90-3. PubMed ID: 19997037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EphA7 regulates spiral ganglion innervation of cochlear hair cells.
    Kim YJ; Ibrahim LA; Wang SZ; Yuan W; Evgrafov OV; Knowles JA; Wang K; Tao HW; Zhang LI
    Dev Neurobiol; 2016 Apr; 76(4):452-69. PubMed ID: 26178595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Math1 regulates development of the sensory epithelium in the mammalian cochlea.
    Woods C; Montcouquiol M; Kelley MW
    Nat Neurosci; 2004 Dec; 7(12):1310-8. PubMed ID: 15543141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea.
    Barclay M; Constable R; James NR; Thorne PR; Montgomery JM
    Neuroscience; 2016 Jun; 325():50-62. PubMed ID: 27012610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jxc1/Sobp, encoding a nuclear zinc finger protein, is critical for cochlear growth, cell fate, and patterning of the organ of corti.
    Chen Z; Montcouquiol M; Calderon R; Jenkins NA; Copeland NG; Kelley MW; Noben-Trauth K
    J Neurosci; 2008 Jun; 28(26):6633-41. PubMed ID: 18579736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory system development: primary auditory neurons and their targets.
    Rubel EW; Fritzsch B
    Annu Rev Neurosci; 2002; 25():51-101. PubMed ID: 12052904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of Prox1 during mouse cochlear development.
    Bermingham-McDonogh O; Oesterle EC; Stone JS; Hume CR; Huynh HM; Hayashi T
    J Comp Neurol; 2006 May; 496(2):172-86. PubMed ID: 16538679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the F-box protein Skp2 in cell proliferation in the developing auditory system in mice.
    Dong Y; Nakagawa T; Endo T; Kim TS; Iguchi F; Yamamoto N; Naito Y; Ito J
    Neuroreport; 2003 Apr; 14(5):759-61. PubMed ID: 12692478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal patterns of neuronal programmed cell death during postnatal development of the gerbil cochlea.
    Echteler SM; Magardino T; Rontal M
    Brain Res Dev Brain Res; 2005 Jun; 157(2):192-200. PubMed ID: 15939482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochlear afferent innervation development.
    Delacroix L; Malgrange B
    Hear Res; 2015 Dec; 330(Pt B):157-69. PubMed ID: 26231304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential distribution of stem cells in the auditory and vestibular organs of the inner ear.
    Oshima K; Grimm CM; Corrales CE; Senn P; Martinez Monedero R; Géléoc GS; Edge A; Holt JR; Heller S
    J Assoc Res Otolaryngol; 2007 Mar; 8(1):18-31. PubMed ID: 17171473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dcc Mediates Functional Assembly of Peripheral Auditory Circuits.
    Kim YJ; Wang SZ; Tymanskyj S; Ma L; Tao HW; Zhang LI
    Sci Rep; 2016 Apr; 6():23799. PubMed ID: 27040640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Somatostatin receptor types 1 and 2 in the developing mammalian cochlea.
    Bodmer D; Brand Y; Radojevic V
    Dev Neurosci; 2012; 34(4):342-53. PubMed ID: 22986312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.