BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 2053127)

  • 1. Extremely slow metabolism of amitriptyline but normal metabolism of imipramine and desipramine in an extensive metabolizer of sparteine, debrisoquine, and mephenytoin.
    Brøsen K; Gram LF; Kragh-Sørensen P
    Ther Drug Monit; 1991 Mar; 13(2):177-82. PubMed ID: 2053127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism.
    Brøsen K; Klysner R; Gram LF; Otton SV; Bech P; Bertilsson L
    Eur J Clin Pharmacol; 1986; 30(6):679-84. PubMed ID: 3533565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-demethylation of imipramine correlates with the oxidation of S-mephenytoin (S/R-ratio). A population study.
    Skjelbo E; Gram LF; Brøsen K
    Br J Clin Pharmacol; 1993 Mar; 35(3):331-4. PubMed ID: 8471415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quinidine inhibits the 2-hydroxylation of imipramine and desipramine but not the demethylation of imipramine.
    Brøsen K; Gram LF
    Eur J Clin Pharmacol; 1989; 37(2):155-60. PubMed ID: 2792169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine.
    Skjelbo E; Brøsen K; Hallas J; Gram LF
    Clin Pharmacol Ther; 1991 Jan; 49(1):18-23. PubMed ID: 1988236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-pass metabolism of imipramine and desipramine: impact of the sparteine oxidation phenotype.
    Brøsen K; Gram LF
    Clin Pharmacol Ther; 1988 Apr; 43(4):400-6. PubMed ID: 3356084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of P450IID6, the target of the sparteine-debrisoquin oxidation polymorphism, in the metabolism of imipramine.
    Brøsen K; Zeugin T; Meyer UA
    Clin Pharmacol Ther; 1991 Jun; 49(6):609-17. PubMed ID: 2060250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous high-performance liquid chromatography-electrochemical detection determination of imipramine, desipramine, their 2-hydroxylated metabolites, and imipramine N-oxide in human plasma and urine: preliminary application to oxidation pharmacogenetics.
    Koyama E; Kikuchi Y; Echizen H; Chiba K; Ishizaki T
    Ther Drug Monit; 1993 Jun; 15(3):224-35. PubMed ID: 8333003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin.
    Baumann P; Jonzier-Perey M; Koeb L; Küpfer A; Tinguely D; Schöpf J
    Int Clin Psychopharmacol; 1986 Apr; 1(2):102-12. PubMed ID: 3571939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype.
    Brøsen K; Otton SV; Gram LF
    Clin Pharmacol Ther; 1986 Nov; 40(5):543-9. PubMed ID: 3769385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imipramine metabolism in relation to the sparteine and mephenytoin oxidation polymorphisms--a population study.
    Madsen H; Nielsen KK; Brøsen K
    Br J Clin Pharmacol; 1995 Apr; 39(4):433-9. PubMed ID: 7640151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymorphic drug oxidation in humans.
    Eichelbaum M
    Fed Proc; 1984 May; 43(8):2298-302. PubMed ID: 6714436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine.
    Brøsen K; Hansen JG; Nielsen KK; Sindrup SH; Gram LF
    Eur J Clin Pharmacol; 1993; 44(4):349-55. PubMed ID: 8513845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Tricyclic antidepressants (imipramine, desipramine, amitriptyline, nortriptyline)].
    Yasuda K
    Nihon Rinsho; 1995 Feb; 53 Su Pt 1():934-7. PubMed ID: 8753592
    [No Abstract]   [Full Text] [Related]  

  • 15. d-Propoxyphene is a potent inhibitor of debrisoquine, but not S-mephenytoin 4-hydroxylation in vivo.
    Sanz EJ; Bertilsson L
    Ther Drug Monit; 1990 May; 12(3):297-9. PubMed ID: 2349617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxylation polymorphisms of debrisoquine and mephenytoin in European populations.
    Alván G; Bechtel P; Iselius L; Gundert-Remy U
    Eur J Clin Pharmacol; 1990; 39(6):533-7. PubMed ID: 2151318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of almitrine in extensive and poor metabolisers of debrisoquine/sparteine.
    Herchuelz A; Gangji D; Derenne F; Jeanniot JP; Douchamps J
    Br J Clin Pharmacol; 1991 Jan; 31(1):73-6. PubMed ID: 2015173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic basis of the debrisoquine/sparteine-type genetic polymorphism of drug oxidation. Characterization of bufuralol 1'-hydroxylation in liver microsomes of in vivo phenotyped carriers of the genetic deficiency.
    Dayer P; Kronbach T; Eichelbaum M; Meyer UA
    Biochem Pharmacol; 1987 Dec; 36(23):4145-52. PubMed ID: 3689440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imipramine metabolism in relation to the sparteine oxidation polymorphism--a family study.
    Madsen H; Hansen TS; Brøsen K
    Pharmacogenetics; 1996 Dec; 6(6):513-9. PubMed ID: 9014200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical significance of the sparteine/debrisoquine oxidation polymorphism.
    Brøsen K; Gram LF
    Eur J Clin Pharmacol; 1989; 36(6):537-47. PubMed ID: 2570698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.