These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 20531646)
1. Comparison between optical and electrical interconnects based on power and speed considerations. Feldman MR; Esener SC; Guest CC; Lee SH Appl Opt; 1988 May; 27(9):1742-51. PubMed ID: 20531646 [TBL] [Abstract][Full Text] [Related]
7. Design methods for space-variant optical interconnections to achieve optimum power throughput. Zaleta D; Larsson M; Daschner W; Lee SH Appl Opt; 1995 May; 34(14):2436-47. PubMed ID: 21052378 [TBL] [Abstract][Full Text] [Related]
8. Speed and energy analysis of digital interconnections: comparison of on-chip, off-chip, and free-space technologies. Yayla GI; Marchand PJ; Esener SC Appl Opt; 1998 Jan; 37(2):205-27. PubMed ID: 18268578 [TBL] [Abstract][Full Text] [Related]
9. Hybrid free-space optical bus system for board-to-board interconnections. Yeh JH; Kostuk RK; Tu KY Appl Opt; 1996 Nov; 35(32):6354-64. PubMed ID: 21127659 [TBL] [Abstract][Full Text] [Related]
10. Optical interconnects using top-surface-emitting microlasers and planar optics. Jahns J; Lee YH; Burrus CA; Jewell JL Appl Opt; 1992 Feb; 31(5):592-7. PubMed ID: 20720653 [TBL] [Abstract][Full Text] [Related]
11. Guided-wave and free-space optical interconnects for parallel-processing systems: a comparison. Camp LJ; Sharma R; Feldman MR Appl Opt; 1994 Sep; 33(26):6168-80. PubMed ID: 20936034 [TBL] [Abstract][Full Text] [Related]
12. Non-display applications and the next generation of liquid crystal over silicon technology. Wilkinson TD; Henderson C; Gil Leyva D; Ghannam R; Crossland WA Philos Trans A Math Phys Eng Sci; 2006 Oct; 364(1847):2721-31. PubMed ID: 16973485 [TBL] [Abstract][Full Text] [Related]
14. Multiscale free-space optical interconnects for intrachip global communication: motivation, analysis, and experimental validation. McFadden MJ; Iqbal M; Dillon T; Nair R; Gu T; Prather DW; Haney MW Appl Opt; 2006 Sep; 45(25):6358-66. PubMed ID: 16912771 [TBL] [Abstract][Full Text] [Related]
15. Analysis of intrachip electrical and optical fanout. Pappu AM; Apsel AB Appl Opt; 2005 Oct; 44(30):6361-72. PubMed ID: 16252648 [TBL] [Abstract][Full Text] [Related]
16. Diffractive optics applied to free-space optical interconnects. Urquhart KS; Marchand P; Fainman Y; Lee SH Appl Opt; 1994 Jun; 33(17):3670-82. PubMed ID: 20885758 [TBL] [Abstract][Full Text] [Related]
17. Experimental demonstration of the optical multi-mesh hypercube: scaleable interconnection network for multiprocessors and multicomputers. Louri A; Furlonge S; Neocleous C Appl Opt; 1996 Dec; 35(35):6909-19. PubMed ID: 21151289 [TBL] [Abstract][Full Text] [Related]
18. Tolerancing of board-level-free-space optical interconnects. Zaleta D; Patra S; Ozguz V; Ma J; Lee SH Appl Opt; 1996 Mar; 35(8):1317-27. PubMed ID: 21085244 [TBL] [Abstract][Full Text] [Related]
19. Average capacity of FSO links with transmit laser selection using non-uniform OOK signaling over exponential atmospheric turbulence channels. García-Zambrana A; Castillo-Vázquez B; Castillo-Vázquez C Opt Express; 2010 Sep; 18(19):20445-54. PubMed ID: 20940937 [TBL] [Abstract][Full Text] [Related]
20. Effect of particulates on performance of optical communication in space and an adaptive method to minimize such effects. Arnon S; Kopeika NS Appl Opt; 1994 Jul; 33(21):4930-7. PubMed ID: 20935869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]