These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20531787)

  • 1. Remote sensing of atmospheric winds using speckleturbulence interaction, a CO(2) laser, and optical heterodyne detection.
    Holmes JF; Amzajerdian F; Gudimetla RV; Hunt JM
    Appl Opt; 1988 Jun; 27(12):2532-8. PubMed ID: 20531787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote sensing of atmospheric turbulence and transverse winds from wave-front slope measurements from crossed optical paths.
    Welsh BM; Koeffler SC
    Appl Opt; 1994 Jul; 33(21):4880-8. PubMed ID: 20935864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterodyne Doppler 1-microm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence.
    Chan KP; Killinger DK; Sugimoto N
    Appl Opt; 1991 Jun; 30(18):2617-27. PubMed ID: 20700251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wind and refractive-turbulence sensing using crossed laser beams.
    Wang TI; Clifford SF; Ochs GR
    Appl Opt; 1974 Nov; 13(11):2602-8. PubMed ID: 20134740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence.
    Spuler SM; Richter D; Spowart MP; Rieken K
    Appl Opt; 2011 Feb; 50(6):842-51. PubMed ID: 21343963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transversely excited atmospheric CO(2) laser radar with heterodyne detection.
    Cruickshank JM
    Appl Opt; 1979 Feb; 18(3):290-3. PubMed ID: 20208707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent laser radar performance for general atmospheric refractive turbulence.
    Frehlich RG; Kavaya MJ
    Appl Opt; 1991 Dec; 30(36):5325-52. PubMed ID: 20717362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote atmospheric sensing with an airborne laser absorption spectrometer.
    Menzies RT; Chahine MT
    Appl Opt; 1974 Dec; 13(12):2840-9. PubMed ID: 20134798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of atmospheric turbulence on heterodyne lidar performance.
    Belen'kii MS
    Appl Opt; 1993 Sep; 32(27):5368-72. PubMed ID: 20856346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements.
    Menyuk N; Killinger DK; Menyuk CR
    Appl Opt; 1982 Sep; 21(18):3377-83. PubMed ID: 20396240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser remote sensing of the atmosphere.
    Killinger DK; Menyuk N
    Science; 1987 Jan; 235(4784):37-45. PubMed ID: 17769312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging and target detection with a heterodyne-reception optical radar.
    Shapiro JH; Capron BA; Harney RC
    Appl Opt; 1981 Oct; 20(19):3292-313. PubMed ID: 20333146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels.
    García-Zambrana A; Castillo-Vázquez C; Castillo-Vázquez B
    Opt Express; 2010 Mar; 18(6):5356-66. PubMed ID: 20389550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent Doppler lidar signal covariance including wind shear and wind turbulence.
    Frehlich R
    Appl Opt; 1994 Sep; 33(27):6472-81. PubMed ID: 20941185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation in the time domain for heterodyne coherent laser radar.
    Salamitou P; Dabas A; Flamant PH
    Appl Opt; 1995 Jan; 34(3):499-506. PubMed ID: 20963144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote sensing of wind velocity and strength of refractive turbulence using a two-spatial-filter receiver.
    Hanson SG; Churnside JH; Wilson JJ
    Appl Opt; 1994 Sep; 33(25):5859-68. PubMed ID: 20935989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical communication through random atmospheric turbulence.
    Laussade JP; Yariv A; Comly J
    Appl Opt; 1969 Aug; 8(8):1607-11. PubMed ID: 20072485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent optical array receivers for the mitigation of atmospheric turbulence and speckle effects.
    Gatt P; Costello TP; Heimmermann DA; Castellanos DC; Weeks AR; Stickley CM
    Appl Opt; 1996 Oct; 35(30):5999-6009. PubMed ID: 21127615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser absorption spectrometer: remote measurement of tropospheric ozone.
    Shumate MS; Menzies RT; Grant WB; McDougal DS
    Appl Opt; 1981 Feb; 20(4):545-53. PubMed ID: 20309154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tristatic high resolution Doppler lidar to study winds and turbulence in the troposphere.
    Abreu VJ; Killeen TL; Hays PB
    Appl Opt; 1981 Jul; 20(13):2196-202. PubMed ID: 20332916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.