These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2053208)

  • 1. Angle-dependent backscatter from the arterial wall.
    de Kroon MG; van der Wal LF; Gussenhoven WJ; Bom N
    Ultrasound Med Biol; 1991; 17(2):121-6. PubMed ID: 2053208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backscatter directivity and integrated backscatter power of arterial tissue.
    de Kroon MG; van der Wal LF; Gussenhoven WJ; Rijsterborgh H; Bom N
    Int J Card Imaging; 1991; 6(3-4):265-75. PubMed ID: 1919069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue.
    Rose JH; Kaufmann MR; Wickline SA; Hall CS; Miller JG
    J Acoust Soc Am; 1995 Jan; 97(1):656-68. PubMed ID: 7860840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural remodeling of human myocardial tissue after infarction. Quantification with ultrasonic backscatter.
    Wickline SA; Verdonk ED; Wong AK; Shepard RK; Miller JG
    Circulation; 1992 Jan; 85(1):259-68. PubMed ID: 1728457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the ultrasonic properties of vascular tissues and blood from 35-65 MHz.
    Lockwood GR; Ryan LK; Hunt JW; Foster FS
    Ultrasound Med Biol; 1991; 17(7):653-66. PubMed ID: 1781068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angle dependence of intravascular ultrasound imaging and its feasibility in tissue characterization of human atherosclerotic tissue.
    Hiro T; Leung CY; Karimi H; Farvid AR; Tobis JM
    Am Heart J; 1999 Mar; 137(3):476-81. PubMed ID: 10047629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying acoustic scattering sources in normal renal parenchyma from the anisotropy in acoustic properties.
    Insana MF; Hall TJ; Fishback JL
    Ultrasound Med Biol; 1991; 17(6):613-26. PubMed ID: 1962364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of anisotropic myocardial backscatter using spectral slope, intercept and midband fit parameters.
    Yang M; Krueger TM; Miller JG; Holland MR
    Ultrason Imaging; 2007 Apr; 29(2):122-34. PubMed ID: 17679326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic imaging of the stress distribution in elastic media due to an external compressor.
    Ponnekanti H; Ophir J; Cespedes I
    Ultrasound Med Biol; 1994; 20(1):27-33. PubMed ID: 8197624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropy of the ultrasonic backscatter of myocardial tissue: II. Measurements in vivo.
    Madaras EI; Perez J; Sobel BE; Mottley JG; Miller JG
    J Acoust Soc Am; 1988 Feb; 83(2):762-9. PubMed ID: 3351134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropy of high-frequency integrated backscatter from aortic valve cusps.
    Khan Z; Boughner DR; Lacefield JC
    Ultrasound Med Biol; 2008 Sep; 34(9):1504-12. PubMed ID: 18407400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying Backscatter Anisotropy Using the Reference Phantom Method.
    Guerrero QW; Rosado-Mendez IM; Drehfal LC; Feltovich H; Hall TJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1063-1077. PubMed ID: 28463191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropy of the apparent frequency dependence of backscatter in formalin fixed human myocardium.
    Hall CS; Verdonk ED; Wickline SA; Perez JE; Miller JG
    J Acoust Soc Am; 1997 Jan; 101(1):563-8. PubMed ID: 9000744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo radiofrequency-based ultrasonic tissue characterization of the atherosclerotic plaque.
    Urbani MP; Picano E; Parenti G; Mazzarisi A; Fiori L; Paterni M; Pelosi G; Landini L
    Stroke; 1993 Oct; 24(10):1507-12. PubMed ID: 8378954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro high resolution intravascular imaging in muscular and elastic arteries.
    Lockwood GR; Ryan LK; Gotlieb AI; Lonn E; Hunt JW; Liu P; Foster FS
    J Am Coll Cardiol; 1992 Jul; 20(1):153-60. PubMed ID: 1607517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study.
    Gussenhoven EJ; Essed CE; Lancée CT; Mastik F; Frietman P; van Egmond FC; Reiber J; Bosch H; van Urk H; Roelandt J
    J Am Coll Cardiol; 1989 Oct; 14(4):947-52. PubMed ID: 2677088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The vascular aging process: the potentials of intravascular echography].
    Iliceto S; Carella L; Caruso G; Rizzon P
    Cardiologia; 1991 Dec; 36(12 Suppl 1):255-61. PubMed ID: 1841779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling acoustic backscatter from kidney microstructure using an anisotropic correlation function.
    Insana MF
    J Acoust Soc Am; 1995 Jan; 97(1):649-55. PubMed ID: 7860839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation and frequency dependence of backscatter coefficient in normal and pathological breast tissues.
    Landini L; Sarnelli R; Salvadori M; Squartini F
    Ultrasound Med Biol; 1987 Feb; 13(2):77-83. PubMed ID: 3590363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic ultrasonic backscatter from the renal cortex.
    Rubin JM; Carson PL; Meyer CR
    Ultrasound Med Biol; 1988; 14(6):507-11. PubMed ID: 3067432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.