BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 20532223)

  • 1. Characteristics of transposable element exonization within human and mouse.
    Sela N; Mersch B; Hotz-Wagenblatt A; Ast G
    PLoS One; 2010 Jun; 5(6):e10907. PubMed ID: 20532223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene.
    Amit M; Sela N; Keren H; Melamed Z; Muler I; Shomron N; Izraeli S; Ast G
    BMC Mol Biol; 2007 Nov; 8():109. PubMed ID: 18047649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SERpredict: detection of tissue- or tumor-specific isoforms generated through exonization of transposable elements.
    Mersch B; Sela N; Ast G; Suhai S; Hotz-Wagenblatt A
    BMC Genet; 2007 Nov; 8():78. PubMed ID: 17986331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome.
    Sela N; Mersch B; Gal-Mark N; Lev-Maor G; Hotz-Wagenblatt A; Ast G
    Genome Biol; 2007; 8(6):R127. PubMed ID: 17594509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exonization of transposed elements: A challenge and opportunity for evolution.
    Schmitz J; Brosius J
    Biochimie; 2011 Nov; 93(11):1928-34. PubMed ID: 21787833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond DNA: RNA editing and steps toward Alu exonization in primates.
    Möller-Krull M; Zemann A; Roos C; Brosius J; Schmitz J
    J Mol Biol; 2008 Oct; 382(3):601-9. PubMed ID: 18680752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates.
    Sela N; Kim E; Ast G
    Genome Biol; 2010; 11(6):R59. PubMed ID: 20525173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ds transposon is biased towards providing splice donor sites for exonization in transgenic tobacco.
    Huang KC; Yang HC; Li KT; Liu LY; Charng YC
    Plant Mol Biol; 2012 Jul; 79(4-5):509-19. PubMed ID: 22644441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide survey of ds exonization to enrich transcriptomes and proteomes in plants.
    Liu LY; Charng YC
    Evol Bioinform Online; 2012; 8():575-87. PubMed ID: 23091369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative splicing of Alu exons--two arms are better than one.
    Gal-Mark N; Schwartz S; Ast G
    Nucleic Acids Res; 2008 Apr; 36(6):2012-23. PubMed ID: 18276646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alu-SINE exonization: en route to protein-coding function.
    Krull M; Brosius J; Schmitz J
    Mol Biol Evol; 2005 Aug; 22(8):1702-11. PubMed ID: 15901843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs).
    Krull M; Petrusma M; Makalowski W; Brosius J; Schmitz J
    Genome Res; 2007 Aug; 17(8):1139-45. PubMed ID: 17623809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exonization of the LTR transposable elements in human genome.
    Piriyapongsa J; Polavarapu N; Borodovsky M; McDonald J
    BMC Genomics; 2007 Aug; 8():291. PubMed ID: 17725822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifactorial interplay controls the splicing profile of Alu-derived exons.
    Ram O; Schwartz S; Ast G
    Mol Cell Biol; 2008 May; 28(10):3513-25. PubMed ID: 18332115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ExoPLOT: Representation of alternative splicing in human tissues and developmental stages with transposed element (TE) involvement.
    Zhang F; Raabe CA; Cardoso-Moreira M; Brosius J; Kaessmann H; Schmitz J
    Genomics; 2022 Jul; 114(4):110434. PubMed ID: 35863675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of new functional profiles of protein isoforms yielded by ds exonization in rice.
    Chien TY; Liu LY; Charng YC
    Evol Bioinform Online; 2013; 9():417-27. PubMed ID: 24137048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exonization of AluYa5 in the human ACE gene requires mutations in both 3' and 5' splice sites and is facilitated by a conserved splicing enhancer.
    Lei H; Day IN; Vorechovský I
    Nucleic Acids Res; 2005; 33(12):3897-906. PubMed ID: 16027113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transposable element fragments in protein-coding regions and their contributions to human functional proteins.
    Wu M; Li L; Sun Z
    Gene; 2007 Oct; 401(1-2):165-71. PubMed ID: 17716834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alu-containing exons are alternatively spliced.
    Sorek R; Ast G; Graur D
    Genome Res; 2002 Jul; 12(7):1060-7. PubMed ID: 12097342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposable elements in disease-associated cryptic exons.
    Vorechovsky I
    Hum Genet; 2010 Feb; 127(2):135-54. PubMed ID: 19823873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.