These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 20532260)

  • 21. Light-assisted synthesis of metal oxide hierarchical structures and their catalytic applications.
    King'ondu CK; Iyer A; Njagi EC; Opembe N; Genuino H; Huang H; Ristau RA; Suib SL
    J Am Chem Soc; 2011 Mar; 133(12):4186-9. PubMed ID: 21332136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ one-pot synthesis of 1-dimensional transition metal oxide nanocrystals.
    Seo JW; Jun YW; Ko SJ; Cheon J
    J Phys Chem B; 2005 Mar; 109(12):5389-91. PubMed ID: 16851566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal phase transformations in LaGaO(3) and LaAlO(3) perovskites: an experimental and computational solid-state NMR study.
    Blanc F; Middlemiss DS; Buannic L; Palumbo JL; Farnan I; Grey CP
    Solid State Nucl Magn Reson; 2012 Apr; 42():87-97. PubMed ID: 22341485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires.
    Thangala J; Vaddiraju S; Bogale R; Thurman R; Powers T; Deb B; Sunkara MK
    Small; 2007 May; 3(5):890-6. PubMed ID: 17415736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generalized trends in the formation energies of perovskite oxides.
    Zeng Z; Calle-Vallejo F; Mogensen MB; Rossmeisl J
    Phys Chem Chem Phys; 2013 May; 15(20):7526-33. PubMed ID: 23579382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel borothermal process for the synthesis of nanocrystalline oxides and borides of niobium.
    Jha M; Ramanujachary KV; Lofland SE; Gupta G; Ganguli AK
    Dalton Trans; 2011 Aug; 40(31):7879-88. PubMed ID: 21743887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of monoclinic potassium niobate nanowires that are stable at room temperature.
    Kim S; Lee JH; Lee J; Kim SW; Kim MH; Park S; Chung H; Kim YI; Kim W
    J Am Chem Soc; 2013 Jan; 135(1):6-9. PubMed ID: 23234402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noble metal collection through air: perovskite oxide as a novel collector.
    Daté M; Nomura K; Kageyama H; Fujitani T
    Chemphyschem; 2011 Jan; 12(1):109-11. PubMed ID: 21226187
    [No Abstract]   [Full Text] [Related]  

  • 30. An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells.
    Zhu Y; Chen ZG; Zhou W; Jiang S; Zou J; Shao Z
    ChemSusChem; 2013 Dec; 6(12):2249-54. PubMed ID: 24155098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxygen content, crystal structure and chemical expansion of PrBaCo(2-x)Fe(x)O(6-δ) double perovskites.
    Tsvetkov DS; Ivanov IL; Malyshkin DA; Zuev AY
    Dalton Trans; 2014 Aug; 43(31):11862-6. PubMed ID: 24964366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and catalytic properties of mesoporous, bifunctional, gallium-niobium mixed oxides.
    Deshmane CA; Jasinski JB; Ratnasamy P; Carreon MA
    Chem Commun (Camb); 2010 Sep; 46(34):6347-9. PubMed ID: 20714564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The chemistry of graphene oxide.
    Dreyer DR; Park S; Bielawski CW; Ruoff RS
    Chem Soc Rev; 2010 Jan; 39(1):228-40. PubMed ID: 20023850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling of hydrocarbon sensors based on p-type semiconducting perovskites.
    Sahner K; Moos R
    Phys Chem Chem Phys; 2007 Feb; 9(5):635-42. PubMed ID: 17242745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rational design, synthesis, purification, and activation of metal-organic framework materials.
    Farha OK; Hupp JT
    Acc Chem Res; 2010 Aug; 43(8):1166-75. PubMed ID: 20608672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature dependence of dielectric permittivity of perovskite-type artificial superlattices.
    Kinbara H; Harigai T; Kakemoto H; Wada S; Tsurumi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2541-7. PubMed ID: 18276552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Composite-hydroxide-mediated approach for the synthesis of nanostructures of complex functional-oxides.
    Liu H; Hu C; Wang ZL
    Nano Lett; 2006 Jul; 6(7):1535-40. PubMed ID: 16834445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication and photocatalytic property of Pt-intercalated layered perovskite niobates H(1-x)LaNb(2-x)Mo(x)O(7) (x=0-0.15).
    Huang Y; Li J; Wei Y; Li Y; Lin J; Wu J
    J Hazard Mater; 2009 Jul; 166(1):103-8. PubMed ID: 19111974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ferroic properties in bi-component perovskites: artificial superlattices and naturally forming compounds.
    Saha-Dasgupta T
    J Phys Condens Matter; 2014 May; 26(19):193201. PubMed ID: 24763194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-templated synthesis and thermal conductivity investigation for ultrathin perovskite oxide nanowires.
    Yadav GG; Zhang G; Qiu B; Susoreny JA; Ruan X; Wu Y
    Nanoscale; 2011 Oct; 3(10):4078-81. PubMed ID: 21858372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.