These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 20532325)
1. Predicting impurity gases and phases during hydrogen evolution from complex metal hydrides using free energy minimization enabled by first-principles calculations. Kim KC; Allendorf MD; Stavila V; Sholl DS Phys Chem Chem Phys; 2010 Sep; 12(33):9918-26. PubMed ID: 20532325 [TBL] [Abstract][Full Text] [Related]
2. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. Alapati SV; Johnson JK; Sholl DS J Phys Chem B; 2006 May; 110(17):8769-76. PubMed ID: 16640434 [TBL] [Abstract][Full Text] [Related]
3. Large-scale screening of metal hydrides for hydrogen storage from first-principles calculations based on equilibrium reaction thermodynamics. Kim KC; Kulkarni AD; Johnson JK; Sholl DS Phys Chem Chem Phys; 2011 Apr; 13(15):7218-29. PubMed ID: 21409194 [TBL] [Abstract][Full Text] [Related]
4. Dehydrogenation mechanisms and thermodynamics of MNH2BH3 (M=Li, Na) metal amidoboranes as predicted from first principles. Shevlin SA; Kerkeni B; Guo ZX Phys Chem Chem Phys; 2011 May; 13(17):7649-59. PubMed ID: 21336360 [TBL] [Abstract][Full Text] [Related]
5. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. Alapati SV; Karl Johnson J; Sholl DS Phys Chem Chem Phys; 2007 Mar; 9(12):1438-52. PubMed ID: 17356751 [TBL] [Abstract][Full Text] [Related]
6. Mechanistic study of LiNH(2)BH(3) formation from (LiH)(4) + NH(3)BH(3) and subsequent dehydrogenation. Lee TB; McKee ML Inorg Chem; 2009 Aug; 48(16):7564-75. PubMed ID: 19591435 [TBL] [Abstract][Full Text] [Related]
7. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
8. First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H system. Ozolins V; Majzoub EH; Wolverton C J Am Chem Soc; 2009 Jan; 131(1):230-7. PubMed ID: 19072157 [TBL] [Abstract][Full Text] [Related]
9. Density functional study of the thermodynamics of hydrogen production by tetrairon hexathiolate, Fe4[MeC(CH2S)3]2(CO)8, a hydrogenase model. Surawatanawong P; Hall MB Inorg Chem; 2010 Jun; 49(12):5737-47. PubMed ID: 20481518 [TBL] [Abstract][Full Text] [Related]
10. The B-H...H-P dihydrogen bonding in ion pair complexes [(CF(3))(3)BH(-)][HPH(3-n)(Me)(n)(+)] (n = 0-3) and its implication in H(2) elimination and activation reactions. Gao S; Wu W; Mo Y J Phys Chem A; 2009 Jul; 113(28):8108-17. PubMed ID: 19555090 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic studies and hydride transfer reactions from a rhodium complex to BX3 compounds. Mock MT; Potter RG; Camaioni DM; Li J; Dougherty WG; Kassel WS; Twamley B; DuBois DL J Am Chem Soc; 2009 Oct; 131(40):14454-65. PubMed ID: 19754124 [TBL] [Abstract][Full Text] [Related]
12. Investigation of hydrogen absorption in Li7VN4 and Li7MnN4. He G; Herbst JF; Ramesh TN; Pinkerton FE; Meyer MS; Nazar L Phys Chem Chem Phys; 2011 May; 13(19):8889-93. PubMed ID: 21455525 [TBL] [Abstract][Full Text] [Related]
13. Integrated experimental-theoretical investigation of the Na-Li-Al-H system. Opalka SM; Løvvik OM; Brinks HW; Saxe PW; Hauback BC Inorg Chem; 2007 Feb; 46(4):1401-9. PubMed ID: 17291124 [TBL] [Abstract][Full Text] [Related]
14. Examining the robustness of first-principles calculations for metal hydride reaction thermodynamics by detection of metastable reaction pathways. Kim KC; Kulkarni AD; Johnson JK; Sholl DS Phys Chem Chem Phys; 2011 Dec; 13(48):21520-9. PubMed ID: 22068383 [TBL] [Abstract][Full Text] [Related]
15. Stepwise phase transition in the formation of lithium amidoborane. Wu C; Wu G; Xiong Z; David WI; Ryan KR; Jones MO; Edwards PP; Chu H; Chen P Inorg Chem; 2010 May; 49(9):4319-23. PubMed ID: 20353150 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic insights on the copolymerization of polar vinyl monomers with neutral Ni(II) catalysts. Berkefeld A; Drexler M; Möller HM; Mecking S J Am Chem Soc; 2009 Sep; 131(35):12613-22. PubMed ID: 19441790 [TBL] [Abstract][Full Text] [Related]
18. Hydrocarbon fuel effects in solid-oxide fuel cell operation: an experimental and modeling study of n-hexane pyrolysis. Randolph KL; Dean AM Phys Chem Chem Phys; 2007 Aug; 9(31):4245-58. PubMed ID: 17687473 [TBL] [Abstract][Full Text] [Related]
19. Theoretical investigations on the formation and dehydrogenation reaction pathways of H(NH2BH2)(n)H (n = 1-4) oligomers: importance of dihydrogen interactions. Li J; Kathmann SM; Hu HS; Schenter GK; Autrey T; Gutowski M Inorg Chem; 2010 Sep; 49(17):7710-20. PubMed ID: 20701247 [TBL] [Abstract][Full Text] [Related]
20. A first-principles investigation of LiNH(2) as a hydrogen-storage material: effects of substitutions of K and Mg for Li. Zhang C; Alavi A J Phys Chem B; 2006 Apr; 110(14):7139-43. PubMed ID: 16599477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]