These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20532648)

  • 41. The bi-elliptical deformable contour and its application to automated tongue segmentation in Chinese medicine.
    Pang B; Zhang D; Wang K
    IEEE Trans Med Imaging; 2005 Aug; 24(8):946-56. PubMed ID: 16092327
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variety Identification of Raisins Using Near-Infrared Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Gao P; He Y
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30412997
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adaptive color basis transformation. An aid in image segmentation.
    MacAulay C; Tezcan H; Palcic B
    Anal Quant Cytol Histol; 1989 Feb; 11(1):53-8. PubMed ID: 2470389
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new tongue colorchecker design by space representation for precise correction.
    Wang X; Zhang D
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):381-91. PubMed ID: 23193251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Study of factors involved in tongue color diagnosis by kampo medical practitioners using the farnsworth-munsell 100 hue test and tongue color images.
    Oji T; Namiki T; Nakaguchi T; Ueda K; Takeda K; Nakamura M; Okamoto H; Hirasaki Y
    Evid Based Complement Alternat Med; 2014; 2014():783102. PubMed ID: 24808919
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [A new method of automatic analysis of tongue deviation using self-correction].
    Zhu M; Du J; Meng F; Zhang K; Ding C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):152-6. PubMed ID: 22404028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automatic identification and quantitative morphometry of unstained spinal nerve using molecular hyperspectral imaging technology.
    Li Q; Chen Z; He X; Wang Y; Liu H; Xu Q
    Neurochem Int; 2012 Dec; 61(8):1375-84. PubMed ID: 23059447
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.
    Matovic M; Jankovic M; Barjaktarovic M; Jeremic M
    Hell J Nucl Med; 2017; 20 Suppl():159. PubMed ID: 29324929
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging.
    Mo C; Kim G; Lim J; Kim MS; Cho H; Cho BK
    Sensors (Basel); 2015 Nov; 15(11):29511-34. PubMed ID: 26610510
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fusion of color microscopic images based on bidimensional empirical mode decomposition.
    Chen Y; Wang L; Sun Z; Jiang Y; Zhai G
    Opt Express; 2010 Oct; 18(21):21757-69. PubMed ID: 20941076
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Segmentation of tongue shapes during vowel production in magnetic resonance images based on statistical modelling.
    Delmoral JC; Rua Ventura SM; Tavares JMR
    Proc Inst Mech Eng H; 2018 Mar; 232(3):271-281. PubMed ID: 29350087
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Application of hyperspectral imaging technology to objective diagnosis of TCM syndrome].
    Li JX; Wu HJ; Li G; Lin L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):3072-5. PubMed ID: 21284186
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Specular Reflections Removal for Endoscopic Image Sequences With Adaptive-RPCA Decomposition.
    Li R; Pan J; Si Y; Yan B; Hu Y; Qin H
    IEEE Trans Med Imaging; 2020 Feb; 39(2):328-340. PubMed ID: 31283499
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automation of ROI extraction in hyperspectral breast images.
    Kim B; Kehtarnavaz N; LeBoulluec P; Liu H; Peng Y; Euhus D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3658-61. PubMed ID: 24110523
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Principal component analysis for dental shade color.
    Yamamoto S; Hosoya Y; Tsumura N; Ogawa-Ochiai K
    Dent Mater; 2012 Jul; 28(7):736-42. PubMed ID: 22475411
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Tongue diagnosis support system].
    Ikeda N; Uozumi T
    Hokkaido Igaku Zasshi; 2005 May; 80(3):269-77. PubMed ID: 15960161
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computerized color analysis of "xue yu" (blood stasis) in the sublingual vein using a new technology.
    Takeichi M; Sato T
    Am J Chin Med; 1997; 25(2):213-9. PubMed ID: 9288369
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Complexity perception classification method for tongue constitution recognition.
    Ma J; Wen G; Wang C; Jiang L
    Artif Intell Med; 2019 May; 96():123-133. PubMed ID: 31164206
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Image enhancement based on in vivo hyperspectral gastroscopic images: a case study.
    Gu X; Han Z; Yao L; Zhong Y; Shi Q; Fu Y; Liu C; Wang X; Xie T
    J Biomed Opt; 2016 Oct; 21(10):101412. PubMed ID: 27206742
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Analysis of tongue color under natural daylight based on chromatic aberration correction].
    Xu JT; Zhang ZF; Yan ZJ; Tu LP; Lu LM; Shi MY; Zhu FL
    Zhong Xi Yi Jie He Xue Bao; 2009 May; 7(5):422-7. PubMed ID: 19435555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.