BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20532947)

  • 1. Effect of aromatic compounds on the production of laccase and manganese peroxidase by white-rot basidiomycetes.
    Elisashvili V; Kachlishvili E; Khardziani T; Agathos SN
    J Ind Microbiol Biotechnol; 2010 Oct; 37(10):1091-6. PubMed ID: 20532947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes.
    Elisashvili V; Kachlishvili E
    J Biotechnol; 2009 Oct; 144(1):37-42. PubMed ID: 19559737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes.
    Elisashvili V; Kachlishvili E; Penninckx M
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1531-8. PubMed ID: 18716810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trinitrotoluene and mandarin peels selectively affect lignin-modifying enzyme production in white-rot basidiomycetes.
    Kachlishvili E; Asatiani M; Kobakhidze A; Elisashvili V
    Springerplus; 2016; 5():252. PubMed ID: 27026944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds.
    Scheel T; Höfer M; Ludwig S; Hölker U
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):686-91. PubMed ID: 11131396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of laccase production by Cerrena unicolor through fungal interspecies interaction and optimum conditions determination.
    Kachlishvili E; Jokharidze T; Kobakhidze A; Elisashvili V
    Arch Microbiol; 2021 Sep; 203(7):3905-3917. PubMed ID: 34014357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laccase and manganese peroxidase activities of Phellinus robustus and Ganoderma adspersum grown on food industry wastes in submerged fermentation.
    Songulashvili G; Elisashvili V; Wasser S; Nevo E; Hadar Y
    Biotechnol Lett; 2006 Sep; 28(18):1425-9. PubMed ID: 16823599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata.
    Mäkelä MR; Lundell T; Hatakka A; Hildén K
    Fungal Biol; 2013 Jan; 117(1):62-70. PubMed ID: 23332834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum.
    D'Souza TM; Merritt CS; Reddy CA
    Appl Environ Microbiol; 1999 Dec; 65(12):5307-13. PubMed ID: 10583981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of a high level of laccase by submerged fermentation at 120-L scale of Cerrena unicolor C-139 grown on wheat bran.
    Songulashvili G; Spindler D; Jimenéz-Tobón GA; Jaspers C; Kerns G; Penninckx MJ
    C R Biol; 2015 Feb; 338(2):121-5. PubMed ID: 25573330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology engineering of basidiomycetes for improved laccase biosynthesis.
    Antecka A; Blatkiewicz M; Bizukojć M; Ledakowicz S
    Biotechnol Lett; 2016 Apr; 38(4):667-72. PubMed ID: 26699894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Lignin-Modifying Enzyme Activity of Trametes spp. (Agaricomycetes) Isolated from Georgian Forests with an Emphasis on T. multicolor Biosynthetic Potential.
    Kachlishvili E; Asatiani MD; Kobakhidze A; Elisashvili V
    Int J Med Mushrooms; 2018; 20(10):971-987. PubMed ID: 30806269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological Peculiarities of Lignin-Modifying Enzyme Production by the White-Rot Basidiomycete Coriolopsis gallica Strain BCC 142.
    Elisashvili V; Kachlishvili E; Asatiani MD; Darlington R; Kucharzyk KH
    Microorganisms; 2017 Nov; 5(4):. PubMed ID: 29149086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of Phenolic Acid and Enzyme Production from Corn Silage Biologically Treated by Trametes versicolor.
    Bucić-Kojić A; Šelo G; Zelić B; Planinić M; Tišma M
    Appl Biochem Biotechnol; 2017 Mar; 181(3):948-960. PubMed ID: 27696141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of lignocellulolytic enzymes by Trametes gallica and detection of polysaccharide hydrolase and laccase activities in polyacrylamide gels.
    Sun X; Zhang R; Zhang Y
    J Basic Microbiol; 2004; 44(3):220-31. PubMed ID: 15162396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions.
    Tekere M; Zvauya R; Read JS
    J Basic Microbiol; 2001; 41(2):115-29. PubMed ID: 11441459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates.
    Levin L; Melignani E; Ramos AM
    Bioresour Technol; 2010 Jun; 101(12):4554-63. PubMed ID: 20153961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of
    Yuliana T; Putri NZ; Komara DZ; Mardawati E; Lanti I; Rahimah S
    Pak J Biol Sci; 2020 Jan; 23(8):1060-1065. PubMed ID: 32700857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametes polyzona RYNF13.
    Teerapatsakul C; Pothiratana C; Chitradon L; Thachepan S
    J Gen Appl Microbiol; 2017 Jan; 62(6):303-312. PubMed ID: 27885193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of Laccase, Lignin Peroxidase and Manganese Peroxidase Activities in White-Rot Fungi Using Copper Complexes.
    Vrsanska M; Voberkova S; Langer V; Palovcikova D; Moulick A; Adam V; Kopel P
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27869681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.