BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 20533325)

  • 1. Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo.
    Chantry AD; Heath D; Mulivor AW; Pearsall S; Baud'huin M; Coulton L; Evans H; Abdul N; Werner ED; Bouxsein ML; Key ML; Seehra J; Arnett TR; Vanderkerken K; Croucher P
    J Bone Miner Res; 2010 Dec; 25(12):2633-46. PubMed ID: 20533325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma.
    Heath DJ; Chantry AD; Buckle CH; Coulton L; Shaughnessy JD; Evans HR; Snowden JA; Stover DR; Vanderkerken K; Croucher PI
    J Bone Miner Res; 2009 Mar; 24(3):425-36. PubMed ID: 19016584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenesis of myeloma bone disease.
    Roodman GD
    J Cell Biochem; 2010 Feb; 109(2):283-91. PubMed ID: 20014067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma.
    Heath DJ; Vanderkerken K; Cheng X; Gallagher O; Prideaux M; Murali R; Croucher PI
    Cancer Res; 2007 Jan; 67(1):202-8. PubMed ID: 17210700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice.
    Sasaki A; Boyce BF; Story B; Wright KR; Chapman M; Boyce R; Mundy GR; Yoneda T
    Cancer Res; 1995 Aug; 55(16):3551-7. PubMed ID: 7627963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor-beta in osteolytic breast cancer bone metastases.
    Guise TA; Chirgwin JM
    Clin Orthop Relat Res; 2003 Oct; (415 Suppl):S32-8. PubMed ID: 14600590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear factor-kappaB-dependent mechanisms in breast cancer cells regulate tumor burden and osteolysis in bone.
    Gordon AH; O'Keefe RJ; Schwarz EM; Rosier RN; Puzas JE
    Cancer Res; 2005 Apr; 65(8):3209-17. PubMed ID: 15833852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bisphosphonates and osteoprotegerin as inhibitors of myeloma bone disease.
    Croucher PI; Shipman CM; Van Camp B; Vanderkerken K
    Cancer; 2003 Feb; 97(3 Suppl):818-24. PubMed ID: 12548581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathophysiology of multiple myeloma bone disease.
    Lentzsch S; Ehrlich LA; Roodman GD
    Hematol Oncol Clin North Am; 2007 Dec; 21(6):1035-49, viii. PubMed ID: 17996587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Update on the pathogenesis of osteolysis in multiple myeloma patients.
    Giuliani N; Colla S; Rizzoli V
    Acta Biomed; 2004 Dec; 75(3):143-52. PubMed ID: 15796087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prostate cancer bone metastases promote both osteolytic and osteoblastic activity.
    Keller ET; Brown J
    J Cell Biochem; 2004 Mar; 91(4):718-29. PubMed ID: 14991763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes.
    Armstrong AP; Miller RE; Jones JC; Zhang J; Keller ET; Dougall WC
    Prostate; 2008 Jan; 68(1):92-104. PubMed ID: 18008334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblast function in myeloma.
    Roodman GD
    Bone; 2011 Jan; 48(1):135-40. PubMed ID: 20601285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of tumor-bone interactions in osteolytic metastases.
    Chirgwin JM; Guise TA
    Crit Rev Eukaryot Gene Expr; 2000; 10(2):159-78. PubMed ID: 11186331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of osteolytic bone destruction.
    Mundy GR
    Bone; 1991; 12 Suppl 1():S1-6. PubMed ID: 1954046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RANK ligand is a prerequisite for cancer-associated osteolytic lesions.
    Kitazawa S; Kitazawa R
    J Pathol; 2002 Oct; 198(2):228-36. PubMed ID: 12237883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of osteoblast suppression in multiple myeloma.
    Stewart JP; Shaughnessy JD
    J Cell Biochem; 2006 May; 98(1):1-13. PubMed ID: 16440324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sagopilone inhibits breast cancer bone metastasis and bone destruction due to simultaneous inhibition of both tumor growth and bone resorption.
    Strube A; Hoffmann J; Stepina E; Hauff P; Klar U; Käkönen SM
    Clin Cancer Res; 2009 Jun; 15(11):3751-9. PubMed ID: 19470728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of p38alpha mitogen-activated protein kinase prevents the development of osteolytic bone disease, reduces tumor burden, and increases survival in murine models of multiple myeloma.
    Vanderkerken K; Medicherla S; Coulton L; De Raeve H; Willems A; Lawson M; Van Camp B; Protter AA; Higgins LS; Menu E; Croucher PI
    Cancer Res; 2007 May; 67(10):4572-7. PubMed ID: 17495322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-density lipoprotein receptor-related protein 5 (LRP5) mediates the prostate cancer-induced formation of new bone.
    Li ZG; Yang J; Vazquez ES; Rose D; Vakar-Lopez F; Mathew P; Lopez A; Logothetis CJ; Lin SH; Navone NM
    Oncogene; 2008 Jan; 27(5):596-603. PubMed ID: 17700537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.