These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 20533386)
1. Stereoselective and chiroselective surface plasmon resonance (SPR) analysis of amino acids by molecularly imprinted Au-nanoparticle composites. Riskin M; Tel-Vered R; Frasconi M; Yavo N; Willner I Chemistry; 2010 Jun; 16(24):7114-20. PubMed ID: 20533386 [TBL] [Abstract][Full Text] [Related]
2. Selective and enantioselective analysis of mono- and disaccharides using surface plasmon resonance spectroscopy and imprinted boronic acid-functionalized Au nanoparticle composites. Ben-Amram Y; Riskin M; Willner I Analyst; 2010 Nov; 135(11):2952-9. PubMed ID: 20830445 [TBL] [Abstract][Full Text] [Related]
3. Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites. Frasconi M; Tel-Vered R; Riskin M; Willner I Anal Chem; 2010 Mar; 82(6):2512-9. PubMed ID: 20170134 [TBL] [Abstract][Full Text] [Related]
4. Molecularly imprinted Au nanoparticles composites on Au surfaces for the surface plasmon resonance detection of pentaerythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate. Riskin M; Ben-Amram Y; Tel-Vered R; Chegel V; Almog J; Willner I Anal Chem; 2011 Apr; 83(8):3082-8. PubMed ID: 21434640 [TBL] [Abstract][Full Text] [Related]
5. Electrified selective "sponges" made of Au nanoparticles. Frasconi M; Tel-Vered R; Riskin M; Willner I J Am Chem Soc; 2010 Jul; 132(27):9373-82. PubMed ID: 20560584 [TBL] [Abstract][Full Text] [Related]
6. Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite. Riskin M; Tel-Vered R; Lioubashevski O; Willner I J Am Chem Soc; 2009 Jun; 131(21):7368-78. PubMed ID: 19425579 [TBL] [Abstract][Full Text] [Related]
7. Electrified Au nanoparticle sponges with controlled hydrophilic/hydrophobic properties. Balogh D; Tel-Vered R; Riskin M; Orbach R; Willner I ACS Nano; 2011 Jan; 5(1):299-306. PubMed ID: 21141991 [TBL] [Abstract][Full Text] [Related]
8. Layered Metal Nanoparticle Structures on Electrodes for Sensing, Switchable Controlled Uptake/Release, and Photo-electrochemical Applications. Tel-Vered R; Kahn JS; Willner I Small; 2016 Jan; 12(1):51-75. PubMed ID: 26514112 [TBL] [Abstract][Full Text] [Related]
9. SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Matsui J; Akamatsu K; Hara N; Miyoshi D; Nawafune H; Tamaki K; Sugimoto N Anal Chem; 2005 Jul; 77(13):4282-5. PubMed ID: 15987138 [TBL] [Abstract][Full Text] [Related]
10. A quantitative, real-time assessment of binding of peptides and proteins to gold surfaces. Cohavi O; Reichmann D; Abramovich R; Tesler AB; Bellapadrona G; Kokh DB; Wade RC; Vaskevich A; Rubinstein I; Schreiber G Chemistry; 2011 Jan; 17(4):1327-36. PubMed ID: 21243701 [TBL] [Abstract][Full Text] [Related]
11. Enzyme-catalyzed bio-pumping of electrons into au-nanoparticles: a surface plasmon resonance and electrochemical study. Lioubashevski O; Chegel VI; Patolsky F; Katz E; Willner I J Am Chem Soc; 2004 Jun; 126(22):7133-43. PubMed ID: 15174885 [TBL] [Abstract][Full Text] [Related]
12. Probing photoelectrochemical processes in Au-CdS nanoparticle arrays by surface plasmon resonance: application for the detection of acetylcholine esterase inhibitors. Zayats M; Kharitonov AB; Pogorelova SP; Lioubashevski O; Katz E; Willner I J Am Chem Soc; 2003 Dec; 125(51):16006-14. PubMed ID: 14677992 [TBL] [Abstract][Full Text] [Related]
13. Functionalization of gold nanoparticles with amino acid, beta-amyloid peptides and fragment. Majzik A; Fülöp L; Csapó E; Bogár F; Martinek T; Penke B; Bíró G; Dékány I Colloids Surf B Biointerfaces; 2010 Nov; 81(1):235-41. PubMed ID: 20674288 [TBL] [Abstract][Full Text] [Related]
14. Integrated oligoaniline-cross-linked composites of Au nanoparticles/glucose oxidase electrodes: a generic paradigm for electrically contacted enzyme systems. Yehezkeli O; Yan YM; Baravik I; Tel-Vered R; Willner I Chemistry; 2009 Mar; 15(11):2674-9. PubMed ID: 19180594 [TBL] [Abstract][Full Text] [Related]
15. Adsorption of dansylated amino acids on molecularly imprinted surfaces: a surface plasmon resonance study. Li X; Husson SM Biosens Bioelectron; 2006 Sep; 22(3):336-48. PubMed ID: 16753292 [TBL] [Abstract][Full Text] [Related]
16. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film. Zhu A; Luo Y; Tian Y Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788 [TBL] [Abstract][Full Text] [Related]
17. Electrochemically triggered Au nanoparticles "sponges" for the controlled uptake and release of a photoisomerizable dithienylethene guest substrate. Zhang J; Riskin M; Freeman R; Tel-Vered R; Balogh D; Tian H; Willner I ACS Nano; 2011 Jul; 5(7):5936-44. PubMed ID: 21699230 [TBL] [Abstract][Full Text] [Related]
18. Molecularly imprinted aptamers of gold nanoparticles for the enzymatic inhibition and detection of thrombin. Liao YJ; Shiang YC; Huang CC; Chang HT Langmuir; 2012 Jun; 28(24):8944-51. PubMed ID: 22300379 [TBL] [Abstract][Full Text] [Related]
19. Multifunctional au nanoparticle dendrimer-based surface plasmon resonance biosensor and its application for improved insulin detection. Frasconi M; Tortolini C; Botrè F; Mazzei F Anal Chem; 2010 Sep; 82(17):7335-42. PubMed ID: 20698498 [TBL] [Abstract][Full Text] [Related]
20. Au nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations. Zayats M; Pogorelova SP; Kharitonov AB; Lioubashevski O; Katz E; Willner I Chemistry; 2003 Dec; 9(24):6108-14. PubMed ID: 14679522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]