BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20533562)

  • 1. Structural and functional bases for individual differences in motor learning.
    Tomassini V; Jbabdi S; Kincses ZT; Bosnell R; Douaud G; Pozzilli C; Matthews PM; Johansen-Berg H
    Hum Brain Mapp; 2011 Mar; 32(3):494-508. PubMed ID: 20533562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning.
    Steele CJ; Penhune VB
    J Neurosci; 2010 Jun; 30(24):8332-41. PubMed ID: 20554884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.
    McGregor HR; Gribble PL
    J Neurophysiol; 2017 Aug; 118(2):1235-1243. PubMed ID: 28566463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changing brain networks for visuomotor control with increased movement automaticity.
    Floyer-Lea A; Matthews PM
    J Neurophysiol; 2004 Oct; 92(4):2405-12. PubMed ID: 15381748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroanatomical correlates of motor acquisition and motor transfer.
    Seidler RD; Noll DC
    J Neurophysiol; 2008 Apr; 99(4):1836-45. PubMed ID: 18272874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain changes following four weeks of unimanual motor training: Evidence from fMRI-guided diffusion MRI tractography.
    Reid LB; Sale MV; Cunnington R; Mattingley JB; Rose SE
    Hum Brain Mapp; 2017 Sep; 38(9):4302-4312. PubMed ID: 28677154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-free characterization of brain functional networks for motor sequence learning using fMRI.
    Tamás Kincses Z; Johansen-Berg H; Tomassini V; Bosnell R; Matthews PM; Beckmann CF
    Neuroimage; 2008 Feb; 39(4):1950-8. PubMed ID: 18053746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebellar and premotor activity during a non-fatiguing grip task reflects motor fatigue in relapsing-remitting multiple sclerosis.
    Svolgaard O; Andersen KW; Bauer C; Madsen KH; Blinkenberg M; Selleberg F; Siebner HR
    PLoS One; 2018; 13(10):e0201162. PubMed ID: 30356315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A functional MRI study of motor dysfunction in Friedreich's ataxia.
    Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF
    Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning about time: plastic changes and interindividual brain differences.
    Bueti D; Lasaponara S; Cercignani M; Macaluso E
    Neuron; 2012 Aug; 75(4):725-37. PubMed ID: 22920262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinguishable brain activation networks for short- and long-term motor skill learning.
    Floyer-Lea A; Matthews PM
    J Neurophysiol; 2005 Jul; 94(1):512-8. PubMed ID: 15716371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interindividual differences in gray and white matter properties are associated with early complex motor skill acquisition.
    Lehmann N; Tolentino-Castro JW; Kaminski E; Ragert P; Villringer A; Taubert M
    Hum Brain Mapp; 2019 Oct; 40(15):4316-4330. PubMed ID: 31264300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The time course of changes during motor sequence learning: a whole-brain fMRI study.
    Toni I; Krams M; Turner R; Passingham RE
    Neuroimage; 1998 Jul; 8(1):50-61. PubMed ID: 9698575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Myelin Content of the Human Precentral Hand Knob Reflects Interindividual Differences in Manual Motor Control at the Physiological and Behavioral Level.
    Dubbioso R; Madsen KH; Thielscher A; Siebner HR
    J Neurosci; 2021 Apr; 41(14):3163-3179. PubMed ID: 33653698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colocalized White Matter Plasticity and Increased Cerebral Blood Flow Mediate the Beneficial Effect of Cardiovascular Exercise on Long-Term Motor Learning.
    Lehmann N; Villringer A; Taubert M
    J Neurosci; 2020 Mar; 40(12):2416-2429. PubMed ID: 32041897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal activity patterns in premotor cortex during sequence learning in autistic patients.
    Müller RA; Cauich C; Rubio MA; Mizuno A; Courchesne E
    Biol Psychiatry; 2004 Sep; 56(5):323-32. PubMed ID: 15336514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional MRI of motor sequence acquisition: effects of learning stage and performance.
    Müller RA; Kleinhans N; Pierce K; Kemmotsu N; Courchesne E
    Brain Res Cogn Brain Res; 2002 Aug; 14(2):277-93. PubMed ID: 12067701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreasing task-related brain activity over repeated functional MRI scans and sessions with no change in performance: implications for serial investigations.
    Goodyear BG; Douglas EA
    Exp Brain Res; 2009 Jan; 192(2):231-9. PubMed ID: 18818908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cognitive and motor loops of the human cerebro-cerebellar system.
    Salmi J; Pallesen KJ; Neuvonen T; Brattico E; Korvenoja A; Salonen O; Carlson S
    J Cogn Neurosci; 2010 Nov; 22(11):2663-76. PubMed ID: 19925191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rate of visuomotor adaptation correlates with cerebellar white-matter microstructure.
    Della-Maggiore V; Scholz J; Johansen-Berg H; Paus T
    Hum Brain Mapp; 2009 Dec; 30(12):4048-53. PubMed ID: 19507158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.