BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20534195)

  • 1. Conditioned media enhance osteogenic differentiation on poly(L-lactide-co-epsilon-caprolactone)/hydroxyapatite scaffolds and chondrogenic differentiation in alginate.
    Maxson S; Burg KJ
    J Biomater Sci Polym Ed; 2010; 21(11):1441-58. PubMed ID: 20534195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of BMP-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro.
    Shen B; Wei A; Whittaker S; Williams LA; Tao H; Ma DD; Diwan AD
    J Cell Biochem; 2010 Feb; 109(2):406-16. PubMed ID: 19950204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in the ratios of co-cultured mesenchymal stem cells and chondrocytes regulate the expression of cartilaginous and osseous phenotype in alginate constructs.
    Mo XT; Guo SC; Xie HQ; Deng L; Zhi W; Xiang Z; Li XQ; Yang ZM
    Bone; 2009 Jul; 45(1):42-51. PubMed ID: 18708174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro effects of nanophase hydroxyapatite particles on proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells.
    Liu Y; Wang G; Cai Y; Ji H; Zhou G; Zhao X; Tang R; Zhang M
    J Biomed Mater Res A; 2009 Sep; 90(4):1083-91. PubMed ID: 18671263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic differentiation of bone marrow stromal cells on poly(epsilon-caprolactone) nanofiber scaffolds.
    Ruckh TT; Kumar K; Kipper MJ; Popat KC
    Acta Biomater; 2010 Aug; 6(8):2949-59. PubMed ID: 20144747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous alginate/poly(ε-caprolactone) scaffolds: preparation, characterization and in vitro biological activity.
    Grandi C; Di Liddo R; Paganin P; Lora S; Dalzoppo D; Feltrin G; Giraudo C; Tommasini M; Conconi MT; Parnigotto PP
    Int J Mol Med; 2011 Mar; 27(3):455-67. PubMed ID: 21206967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondrogenesis using mesenchymal stem cells and PCL scaffolds.
    Kim HJ; Lee JH; Im GI
    J Biomed Mater Res A; 2010 Feb; 92(2):659-66. PubMed ID: 19235210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly-ε-caprolactone composite scaffolds for bone repair.
    Di Liddo R; Paganin P; Lora S; Dalzoppo D; Giraudo C; Miotto D; Tasso A; Barbon S; Artico M; Bianchi E; Parnigotto PP; Conconi MT; Grandi C
    Int J Mol Med; 2014 Dec; 34(6):1537-46. PubMed ID: 25319350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of enzymes and flow perfusion conditions improves osteogenic differentiation of bone marrow stromal cells cultured upon starch/poly(epsilon-caprolactone) fiber meshes.
    Martins AM; Saraf A; Sousa RA; Alves CM; Mikos AG; Kasper FK; Reis RL
    J Biomed Mater Res A; 2010 Sep; 94(4):1061-9. PubMed ID: 20694973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation.
    Lu Z; Roohani-Esfahani SI; Kwok PC; Zreiqat H
    Tissue Eng Part A; 2011 Jun; 17(11-12):1651-61. PubMed ID: 21306280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure.
    Bernhardt A; Despang F; Lode A; Demmler A; Hanke T; Gelinsky M
    J Tissue Eng Regen Med; 2009 Jan; 3(1):54-62. PubMed ID: 19012272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collagen-PCL sheath-core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells.
    Haslauer CM; Moghe AK; Osborne JA; Gupta BS; Loboa EG
    J Biomater Sci Polym Ed; 2011; 22(13):1695-712. PubMed ID: 20836922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation.
    Chastain SR; Kundu AK; Dhar S; Calvert JW; Putnam AJ
    J Biomed Mater Res A; 2006 Jul; 78(1):73-85. PubMed ID: 16602124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells.
    Rodrigues MT; Lee SJ; Gomes ME; Reis RL; Atala A; Yoo JJ
    Acta Biomater; 2012 Jul; 8(7):2795-806. PubMed ID: 22510402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of osteogenic differentiation of human mesenchymal stem cells by poly[(L-lactide)-co-(epsilon-caprolactone)]/gelatin nanofibers.
    Rim NG; Lee JH; Jeong SI; Lee BK; Kim CH; Shin H
    Macromol Biosci; 2009 Aug; 9(8):795-804. PubMed ID: 19434677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphogenetic signals from chondrocytes promote chondrogenic and osteogenic differentiation of mesenchymal stem cells.
    Hwang NS; Varghese S; Puleo C; Zhang Z; Elisseeff J
    J Cell Physiol; 2007 Aug; 212(2):281-4. PubMed ID: 17520697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators.
    Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV
    Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications.
    Seyednejad H; Gawlitta D; Dhert WJ; van Nostrum CF; Vermonden T; Hennink WE
    Acta Biomater; 2011 May; 7(5):1999-2006. PubMed ID: 21241834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.