These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20534498)

  • 21. Recombinant Thermus aquaticus RNA polymerase for structural studies.
    Kuznedelov K; Lamour V; Patikoglou G; Chlenov M; Darst SA; Severinov K
    J Mol Biol; 2006 May; 359(1):110-21. PubMed ID: 16618493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping of a contact for the RNA 3' terminus in the largest subunit of RNA polymerase.
    Borukhov S; Lee J; Goldfarb A
    J Biol Chem; 1991 Dec; 266(35):23932-5. PubMed ID: 1721060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The interaction between sigma70 and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation.
    Nickels BE; Garrity SJ; Mekler V; Minakhin L; Severinov K; Ebright RH; Hochschild A
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4488-93. PubMed ID: 15761057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and characterization of recombinant Thermus aquaticus RNA polymerase.
    Kuznedelov K; Minakhin L; Severinov K
    Methods Enzymol; 2003; 370():94-108. PubMed ID: 14712637
    [No Abstract]   [Full Text] [Related]  

  • 25. Active center rearrangement in RNA polymerase initiation complex.
    Mustaev A; Kashlev M; Zaychikov E; Grachev M; Goldfarb A
    J Biol Chem; 1993 Sep; 268(26):19185-7. PubMed ID: 7690028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of Thermus aquaticus Gfh1, a Gre-factor paralog that inhibits rather than stimulates transcript cleavage.
    Lamour V; Hogan BP; Erie DA; Darst SA
    J Mol Biol; 2006 Feb; 356(1):179-88. PubMed ID: 16337964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Site-specific aptamer inhibitors of Thermus RNA polymerase.
    Miropolskaya N; Feklistov A; Nikiforov V; Kulbachinskiy A
    Biochem Biophys Res Commun; 2018 Jan; 495(1):110-115. PubMed ID: 29097207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spontaneous cleavage of RNA in ternary complexes of Escherichia coli RNA polymerase and its significance for the mechanism of transcription.
    Surratt CK; Milan SC; Chamberlin MJ
    Proc Natl Acad Sci U S A; 1991 Sep; 88(18):7983-7. PubMed ID: 1716768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determinants of RNA polymerase alpha subunit for interaction with beta, beta', and sigma subunits: hydroxyl-radical protein footprinting.
    Heyduk T; Heyduk E; Severinov K; Tang H; Ebright RH
    Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10162-6. PubMed ID: 8816769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the RNA polymerase trigger loop in catalysis and pausing.
    Zhang J; Palangat M; Landick R
    Nat Struct Mol Biol; 2010 Jan; 17(1):99-104. PubMed ID: 19966797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Positioning of two alpha subunit carboxy-terminal domains of RNA polymerase at promoters by two transcription factors.
    Murakami K; Owens JT; Belyaeva TA; Meares CF; Busby SJ; Ishihama A
    Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11274-8. PubMed ID: 9326599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase.
    Windgassen TA; Mooney RA; Nayak D; Palangat M; Zhang J; Landick R
    Nucleic Acids Res; 2014 Nov; 42(20):12707-21. PubMed ID: 25336618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of σ-dependent pausing by RNA polymerases from Escherichia coli and Thermus aquaticus.
    Zhilina EV; Miropolskaya NA; Bass IA; Brodolin KL; Kulbachinskiy AV
    Biochemistry (Mosc); 2011 Oct; 76(10):1098-106. PubMed ID: 22098235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution.
    Murakami KS; Masuda S; Darst SA
    Science; 2002 May; 296(5571):1280-4. PubMed ID: 12016306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Obligate movements of an active site-linked surface domain control RNA polymerase elongation and pausing via a Phe pocket anchor.
    Bao Y; Landick R
    Proc Natl Acad Sci U S A; 2021 Sep; 118(36):. PubMed ID: 34470825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-Time Observation of Backtracking by Bacterial RNA Polymerase.
    Lass-Napiorkowska A; Heyduk T
    Biochemistry; 2016 Feb; 55(4):647-58. PubMed ID: 26745324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct functions of regions 1.1 and 1.2 of RNA polymerase σ subunits from Escherichia coli and Thermus aquaticus in transcription initiation.
    Miropolskaya N; Ignatov A; Bass I; Zhilina E; Pupov D; Kulbachinskiy A
    J Biol Chem; 2012 Jul; 287(28):23779-89. PubMed ID: 22605342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High intrinsic hydrolytic activity of cyanobacterial RNA polymerase compensates for the absence of transcription proofreading factors.
    Riaz-Bradley A; James K; Yuzenkova Y
    Nucleic Acids Res; 2020 Feb; 48(3):1341-1352. PubMed ID: 31840183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation.
    Nedialkov YA; Opron K; Assaf F; Artsimovitch I; Kireeva ML; Kashlev M; Cukier RI; Nudler E; Burton ZF
    Biochim Biophys Acta; 2013 Feb; 1829(2):187-98. PubMed ID: 23202476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.