These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 20534534)
1. Regulation of Golgi structure and secretion by receptor-induced G protein βγ complex translocation. Saini DK; Karunarathne WK; Angaswamy N; Saini D; Cho JH; Kalyanaraman V; Gautam N Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11417-22. PubMed ID: 20534534 [TBL] [Abstract][Full Text] [Related]
2. Regulation of G-protein signaling by RKTG via sequestration of the G betagamma subunit to the Golgi apparatus. Jiang Y; Xie X; Zhang Y; Luo X; Wang X; Fan F; Zheng D; Wang Z; Chen Y Mol Cell Biol; 2010 Jan; 30(1):78-90. PubMed ID: 19884349 [TBL] [Abstract][Full Text] [Related]
3. Receptor-mediated reversible translocation of the G protein betagamma complex from the plasma membrane to the Golgi complex. Akgoz M; Kalyanaraman V; Gautam N J Biol Chem; 2004 Dec; 279(49):51541-4. PubMed ID: 15448129 [TBL] [Abstract][Full Text] [Related]
4. G protein betagamma complex translocation from plasma membrane to Golgi complex is influenced by receptor gamma subunit interaction. Akgoz M; Kalyanaraman V; Gautam N Cell Signal; 2006 Oct; 18(10):1758-68. PubMed ID: 16517125 [TBL] [Abstract][Full Text] [Related]
5. Regulation of constitutive cargo transport from the trans-Golgi network to plasma membrane by Golgi-localized G protein betagamma subunits. Irannejad R; Wedegaertner PB J Biol Chem; 2010 Oct; 285(42):32393-404. PubMed ID: 20720014 [TBL] [Abstract][Full Text] [Related]
6. All G protein βγ complexes are capable of translocation on receptor activation. Ajith Karunarathne WK; O'Neill PR; Martinez-Espinosa PL; Kalyanaraman V; Gautam N Biochem Biophys Res Commun; 2012 May; 421(3):605-11. PubMed ID: 22538369 [TBL] [Abstract][Full Text] [Related]
7. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane. Jensen DD; Zhao P; Jimenez-Vargas NN; Lieu T; Gerges M; Yeatman HR; Canals M; Vanner SJ; Poole DP; Bunnett NW J Biol Chem; 2016 May; 291(21):11285-99. PubMed ID: 27030010 [TBL] [Abstract][Full Text] [Related]
8. G protein betagamma11 complex translocation is induced by Gi, Gq and Gs coupling receptors and is regulated by the alpha subunit type. Azpiazu I; Akgoz M; Kalyanaraman V; Gautam N Cell Signal; 2006 Aug; 18(8):1190-200. PubMed ID: 16242307 [TBL] [Abstract][Full Text] [Related]
9. Inducible Inhibition of Gβγ Reveals Localization-dependent Functions at the Plasma Membrane and Golgi. Klayman LM; Wedegaertner PB J Biol Chem; 2017 Feb; 292(5):1773-1784. PubMed ID: 27994056 [TBL] [Abstract][Full Text] [Related]
10. Alteration of Golgi structure in senescent cells and its regulation by a G protein γ subunit. Cho JH; Saini DK; Karunarathne WK; Kalyanaraman V; Gautam N Cell Signal; 2011 May; 23(5):785-93. PubMed ID: 21238584 [TBL] [Abstract][Full Text] [Related]
11. Phospholipase C beta3 is a key component in the Gbetagamma/PKCeta/PKD-mediated regulation of trans-Golgi network to plasma membrane transport. Díaz Añel AM Biochem J; 2007 Aug; 406(1):157-65. PubMed ID: 17492941 [TBL] [Abstract][Full Text] [Related]
13. G protein βγ translocation to the Golgi apparatus activates MAPK via p110γ-p101 heterodimers. Khater M; Wei Z; Xu X; Huang W; Lokeshwar BL; Lambert NA; Wu G J Biol Chem; 2021; 296():100325. PubMed ID: 33493514 [TBL] [Abstract][Full Text] [Related]
14. A family of G protein βγ subunits translocate reversibly from the plasma membrane to endomembranes on receptor activation. Saini DK; Kalyanaraman V; Chisari M; Gautam N J Biol Chem; 2007 Aug; 282(33):24099-108. PubMed ID: 17581822 [TBL] [Abstract][Full Text] [Related]
15. G-protein βγ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor signaling. Smrcka AV; Fisher I Cell Mol Life Sci; 2019 Nov; 76(22):4447-4459. PubMed ID: 31435698 [TBL] [Abstract][Full Text] [Related]
16. Protein kinase D and Gβγ mediate sustained nociceptive signaling by biased agonists of protease-activated receptor-2. Zhao P; Pattison LA; Jensen DD; Jimenez-Vargas NN; Latorre R; Lieu T; Jaramillo JO; Lopez-Lopez C; Poole DP; Vanner SJ; Schmidt BL; Bunnett NW J Biol Chem; 2019 Jul; 294(27):10649-10662. PubMed ID: 31142616 [TBL] [Abstract][Full Text] [Related]
17. G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes. O'Neill PR; Karunarathne WK; Kalyanaraman V; Silvius JR; Gautam N Proc Natl Acad Sci U S A; 2012 Dec; 109(51):E3568-77. PubMed ID: 23213235 [TBL] [Abstract][Full Text] [Related]
18. Seven transmembrane receptor core signaling complexes are assembled prior to plasma membrane trafficking. Dupré DJ; Robitaille M; Ethier N; Villeneuve LR; Mamarbachi AM; Hébert TE J Biol Chem; 2006 Nov; 281(45):34561-73. PubMed ID: 16959776 [TBL] [Abstract][Full Text] [Related]
19. RACK1 regulates directional cell migration by acting on G betagamma at the interface with its effectors PLC beta and PI3K gamma. Chen S; Lin F; Shin ME; Wang F; Shen L; Hamm HE Mol Biol Cell; 2008 Sep; 19(9):3909-22. PubMed ID: 18596232 [TBL] [Abstract][Full Text] [Related]
20. PAQR3 regulates Golgi vesicle fission and transport via the Gβγ-PKD signaling pathway. Hewavitharana T; Wedegaertner PB Cell Signal; 2015 Dec; 27(12):2444-51. PubMed ID: 26327583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]