These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 20534555)

  • 1. A fluorophore ligase for site-specific protein labeling inside living cells.
    Uttamapinant C; White KA; Baruah H; Thompson S; Fernández-Suárez M; Puthenveetil S; Ting AY
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10914-9. PubMed ID: 20534555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-guided engineering of a Pacific Blue fluorophore ligase for specific protein imaging in living cells.
    Cohen JD; Thompson S; Ting AY
    Biochemistry; 2011 Sep; 50(38):8221-5. PubMed ID: 21859157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorophore targeting to cellular proteins via enzyme-mediated azide ligation and strain-promoted cycloaddition.
    Yao JZ; Uttamapinant C; Poloukhtine A; Baskin JM; Codelli JA; Sletten EM; Bertozzi CR; Popik VV; Ting AY
    J Am Chem Soc; 2012 Feb; 134(8):3720-8. PubMed ID: 22239252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging protein-protein interactions inside living cells via interaction-dependent fluorophore ligation.
    Slavoff SA; Liu DS; Cohen JD; Ting AY
    J Am Chem Soc; 2011 Dec; 133(49):19769-76. PubMed ID: 22098454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells.
    Liu DS; Nivón LG; Richter F; Goldman PJ; Deerinck TJ; Yao JZ; Richardson D; Phipps WS; Ye AZ; Ellisman MH; Drennan CL; Baker D; Ting AY
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):E4551-9. PubMed ID: 25313043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific protein modification using lipoic acid ligase and bis-aryl hydrazone formation.
    Cohen JD; Zou P; Ting AY
    Chembiochem; 2012 Apr; 13(6):888-94. PubMed ID: 22492621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of a probe ligase with activity in the secretory pathway and application to imaging intercellular protein-protein interactions.
    White KA; Zegelbone PM
    Biochemistry; 2013 May; 52(21):3728-39. PubMed ID: 23614685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast display evolution of a kinetically efficient 13-amino acid substrate for lipoic acid ligase.
    Puthenveetil S; Liu DS; White KA; Thompson S; Ting AY
    J Am Chem Soc; 2009 Nov; 131(45):16430-8. PubMed ID: 19863063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging trans-cellular neurexin-neuroligin interactions by enzymatic probe ligation.
    Liu DS; Loh KH; Lam SS; White KA; Ting AY
    PLoS One; 2013; 8(2):e52823. PubMed ID: 23457442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diels-Alder cycloaddition for fluorophore targeting to specific proteins inside living cells.
    Liu DS; Tangpeerachaikul A; Selvaraj R; Taylor MT; Fox JM; Ting AY
    J Am Chem Soc; 2012 Jan; 134(2):792-5. PubMed ID: 22176354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further assessments of ligase LplA-mediated modifications of proteins in vitro and in cellulo.
    Schirer A; Rouch A; Marcheteau E; Stojko J; Sophie Landron ; Jeantet E; Fould B; Ferry G; Boutin JA
    Mol Biol Rep; 2022 Jan; 49(1):149-161. PubMed ID: 34718939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction.
    Baalmann M; Best M; Wombacher R
    Methods Mol Biol; 2018; 1728():365-387. PubMed ID: 29405010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipoic acid metabolism in Escherichia coli: the lplA and lipB genes define redundant pathways for ligation of lipoyl groups to apoprotein.
    Morris TW; Reed KE; Cronan JE
    J Bacteriol; 1995 Jan; 177(1):1-10. PubMed ID: 8002607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-step protein labeling utilizing lipoic acid ligase and Sonogashira cross-coupling.
    Hauke S; Best M; Schmidt TT; Baalmann M; Krause A; Wombacher R
    Bioconjug Chem; 2014 Sep; 25(9):1632-7. PubMed ID: 25152073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes.
    Fernández-Suárez M; Baruah H; Martínez-Hernández L; Xie KT; Baskin JM; Bertozzi CR; Ting AY
    Nat Biotechnol; 2007 Dec; 25(12):1483-7. PubMed ID: 18059260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum dot targeting with lipoic acid ligase and HaloTag for single-molecule imaging on living cells.
    Liu DS; Phipps WS; Loh KH; Howarth M; Ting AY
    ACS Nano; 2012 Dec; 6(12):11080-7. PubMed ID: 23181687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of lipoate-protein ligase A from Escherichia coli. Determination of the lipoic acid-binding site.
    Fujiwara K; Toma S; Okamura-Ikeda K; Motokawa Y; Nakagawa A; Taniguchi H
    J Biol Chem; 2005 Sep; 280(39):33645-51. PubMed ID: 16043486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The SCF(HOS/beta-TRCP)-ROC1 E3 ubiquitin ligase utilizes two distinct domains within CUL1 for substrate targeting and ubiquitin ligation.
    Wu K; Fuchs SY; Chen A; Tan P; Gomez C; Ronai Z; Pan ZQ
    Mol Cell Biol; 2000 Feb; 20(4):1382-93. PubMed ID: 10648623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phage display evolution of a peptide substrate for yeast biotin ligase and application to two-color quantum dot labeling of cell surface proteins.
    Chen I; Choi YA; Ting AY
    J Am Chem Soc; 2007 May; 129(20):6619-25. PubMed ID: 17472384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipoic Acid Ligase-Promoted Bioorthogonal Protein Modification and Immobilization.
    Plaks JG; Kaar JL
    Methods Mol Biol; 2019; 2012():279-297. PubMed ID: 31161513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.