BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 20534583)

  • 1. Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex.
    Osman D; Waldron KJ; Denton H; Taylor CM; Grant AJ; Mastroeni P; Robinson NJ; Cavet JS
    J Biol Chem; 2010 Aug; 285(33):25259-68. PubMed ID: 20534583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The copper supply pathway to a Salmonella Cu,Zn-superoxide dismutase (SodCII) involves P(1B)-type ATPase copper efflux and periplasmic CueP.
    Osman D; Patterson CJ; Bailey K; Fisher K; Robinson NJ; Rigby SE; Cavet JS
    Mol Microbiol; 2013 Feb; 87(3):466-77. PubMed ID: 23171030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection.
    Fenlon LA; Slauch JM
    J Bacteriol; 2017 Dec; 199(24):. PubMed ID: 28924031
    [No Abstract]   [Full Text] [Related]  

  • 4. Direct ROS scavenging activity of CueP from Salmonella enterica serovar Typhimurium.
    Yoon BY; Yeom JH; Kim JS; Um SH; Jo I; Lee K; Kim YH; Ha NC
    Mol Cells; 2014 Feb; 37(2):100-8. PubMed ID: 24598994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fresh view of the cell biology of copper in enterobacteria.
    Nies DH; Herzberg M
    Mol Microbiol; 2013 Feb; 87(3):447-54. PubMed ID: 23217080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper redistribution in murine macrophages in response to Salmonella infection.
    Achard ME; Stafford SL; Bokil NJ; Chartres J; Bernhardt PV; Schembri MA; Sweet MJ; McEwan AG
    Biochem J; 2012 May; 444(1):51-7. PubMed ID: 22369063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host and Pathogen Copper-Transporting P-Type ATPases Function Antagonistically during Salmonella Infection.
    Ladomersky E; Khan A; Shanbhag V; Cavet JS; Chan J; Weisman GA; Petris MJ
    Infect Immun; 2017 Sep; 85(9):. PubMed ID: 28652309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the periplasmic copper-binding protein CueP from Salmonella enterica serovar Typhimurium.
    Yoon BY; Kim YH; Kim N; Yun BY; Kim JS; Lee JH; Cho HS; Lee K; Ha NC
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):1867-75. PubMed ID: 24100307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compartment and signal-specific codependence in the transcriptional control of Salmonella periplasmic copper homeostasis.
    Pezza A; Pontel LB; López C; Soncini FC
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):11573-11578. PubMed ID: 27679850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periplasmic disulfide isomerase DsbC is involved in the reduction of copper binding protein CueP from Salmonella enterica serovar Typhimurium.
    Yoon BY; Kim JS; Um SH; Jo I; Yoo JW; Lee K; Kim YH; Ha NC
    Biochem Biophys Res Commun; 2014 Apr; 446(4):971-6. PubMed ID: 24657263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria.
    Pontel LB; Soncini FC
    Mol Microbiol; 2009 Jul; 73(2):212-25. PubMed ID: 19538445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF.
    Padilla-Benavides T; George Thompson AM; McEvoy MM; Argüello JM
    J Biol Chem; 2014 Jul; 289(30):20492-501. PubMed ID: 24917681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites.
    González-Guerrero M; Argüello JM
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Scs disulfide reductase system cooperates with the metallochaperone CueP in
    Subedi P; Paxman JJ; Wang G; Ukuwela AA; Xiao Z; Heras B
    J Biol Chem; 2019 Nov; 294(44):15876-15888. PubMed ID: 31444272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function.
    Raimunda D; González-Guerrero M; Leeber BW; Argüello JM
    Biometals; 2011 Jun; 24(3):467-75. PubMed ID: 21210186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of Copper Homeostasis and Virulence in
    Méndez AAE; Mendoza JI; Echarren ML; Terán I; Checa SK; Soncini FC
    Front Microbiol; 2022; 13():823176. PubMed ID: 35369444
    [No Abstract]   [Full Text] [Related]  

  • 17. The phage shock protein PspA facilitates divalent metal transport and is required for virulence of Salmonella enterica sv. Typhimurium.
    Karlinsey JE; Maguire ME; Becker LA; Crouch ML; Fang FC
    Mol Microbiol; 2010 Nov; 78(3):669-85. PubMed ID: 20807201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus.
    Völlmecke C; Drees SL; Reimann J; Albers SV; Lübben M
    Microbiology (Reading); 2012 Jun; 158(Pt 6):1622-1633. PubMed ID: 22361944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper Handling in the Salmonella Cell Envelope and Its Impact on Virulence.
    Checa SK; Giri GF; Espariz M; Argüello JM; Soncini FC
    Trends Microbiol; 2021 May; 29(5):384-387. PubMed ID: 33516594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction cycle of Thermotoga maritima copper ATPase and conformational characterization of catalytically deficient mutants.
    Hatori Y; Lewis D; Toyoshima C; Inesi G
    Biochemistry; 2009 Jun; 48(22):4871-80. PubMed ID: 19364131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.