These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20534727)

  • 1. Connective tissue growth factor is required for skeletal development and postnatal skeletal homeostasis in male mice.
    Canalis E; Zanotti S; Beamer WG; Economides AN; Smerdel-Ramoya A
    Endocrinology; 2010 Aug; 151(8):3490-501. PubMed ID: 20534727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal overexpression of connective tissue growth factor impairs bone formation and causes osteopenia.
    Smerdel-Ramoya A; Zanotti S; Stadmeyer L; Durant D; Canalis E
    Endocrinology; 2008 Sep; 149(9):4374-81. PubMed ID: 18535099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nephroblastoma overexpressed (Nov) inactivation sensitizes osteoblasts to bone morphogenetic protein-2, but nov is dispensable for skeletal homeostasis.
    Canalis E; Smerdel-Ramoya A; Durant D; Economides AN; Beamer WG; Zanotti S
    Endocrinology; 2010 Jan; 151(1):221-33. PubMed ID: 19934377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nemo-like kinase regulates postnatal skeletal homeostasis.
    Canalis E; Kranz L; Zanotti S
    J Cell Physiol; 2014 Nov; 229(11):1736-43. PubMed ID: 24664870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditional inactivation of noggin in the postnatal skeleton causes osteopenia.
    Canalis E; Brunet LJ; Parker K; Zanotti S
    Endocrinology; 2012 Apr; 153(4):1616-26. PubMed ID: 22334719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Notch inhibits osteoblast differentiation and causes osteopenia.
    Zanotti S; Smerdel-Ramoya A; Stadmeyer L; Durant D; Radtke F; Canalis E
    Endocrinology; 2008 Aug; 149(8):3890-9. PubMed ID: 18420737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hairy and Enhancer of Split-related with YRPW motif (HEY)2 regulates bone remodeling in mice.
    Zanotti S; Canalis E
    J Biol Chem; 2013 Jul; 288(30):21547-57. PubMed ID: 23782701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditional disruption of Pkd1 in osteoblasts results in osteopenia due to direct impairment of bone formation.
    Xiao Z; Zhang S; Cao L; Qiu N; David V; Quarles LD
    J Biol Chem; 2010 Jan; 285(2):1177-87. PubMed ID: 19887454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoblast lineage-specific effects of notch activation in the skeleton.
    Canalis E; Parker K; Feng JQ; Zanotti S
    Endocrinology; 2013 Feb; 154(2):623-34. PubMed ID: 23275471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gremlin1 is required for skeletal development and postnatal skeletal homeostasis.
    Canalis E; Parker K; Zanotti S
    J Cell Physiol; 2012 Jan; 227(1):269-77. PubMed ID: 21412775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HES1 (hairy and enhancer of split 1) is a determinant of bone mass.
    Zanotti S; Smerdel-Ramoya A; Canalis E
    J Biol Chem; 2011 Jan; 286(4):2648-57. PubMed ID: 21084301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connective tissue growth factor is a target of notch signaling in cells of the osteoblastic lineage.
    Canalis E; Zanotti S; Smerdel-Ramoya A
    Bone; 2014 Jul; 64():273-80. PubMed ID: 24792956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nephroblastoma overexpressed (Nov) inhibits osteoblastogenesis and causes osteopenia.
    Rydziel S; Stadmeyer L; Zanotti S; Durant D; Smerdel-Ramoya A; Canalis E
    J Biol Chem; 2007 Jul; 282(27):19762-72. PubMed ID: 17500060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation.
    Bennett CN; Ouyang H; Ma YL; Zeng Q; Gerin I; Sousa KM; Lane TF; Krishnan V; Hankenson KD; MacDougald OA
    J Bone Miner Res; 2007 Dec; 22(12):1924-32. PubMed ID: 17708715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis.
    Arnott JA; Lambi AG; Mundy C; Hendesi H; Pixley RA; Owen TA; Safadi FF; Popoff SN
    Crit Rev Eukaryot Gene Expr; 2011; 21(1):43-69. PubMed ID: 21967332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cartilage-specific over-expression of CCN family member 2/connective tissue growth factor (CCN2/CTGF) stimulates insulin-like growth factor expression and bone growth.
    Tomita N; Hattori T; Itoh S; Aoyama E; Yao M; Yamashiro T; Takigawa M
    PLoS One; 2013; 8(3):e59226. PubMed ID: 23555635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twisted gastrulation, a bone morphogenetic protein agonist/antagonist, is not required for post-natal skeletal function.
    Gazzerro E; Deregowski V; Stadmeyer L; Gale NW; Economides AN; Canalis E
    Bone; 2006 Dec; 39(6):1252-60. PubMed ID: 16934545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DLX3 regulates bone mass by targeting genes supporting osteoblast differentiation and mineral homeostasis in vivo.
    Isaac J; Erthal J; Gordon J; Duverger O; Sun HW; Lichtler AC; Stein GS; Lian JB; Morasso MI
    Cell Death Differ; 2014 Sep; 21(9):1365-76. PubMed ID: 24948010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditional mesenchymal disruption of pkd1 results in osteopenia and polycystic kidney disease.
    Qiu N; Xiao Z; Cao L; David V; Quarles LD
    PLoS One; 2012; 7(9):e46038. PubMed ID: 23029375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of conditional inactivation of beta 1 integrins using twist 2 Cre, Osterix Cre and osteocalcin Cre lines on skeletal phenotype.
    Shekaran A; Shoemaker JT; Kavanaugh TE; Lin AS; LaPlaca MC; Fan Y; Guldberg RE; GarcĂ­a AJ
    Bone; 2014 Nov; 68():131-41. PubMed ID: 25183373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.