BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 20534811)

  • 21. ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN, an Interacting Partner of RAB5 GTPases, Regulates Membrane Trafficking to Protein Storage Vacuoles in Arabidopsis.
    Sakurai HT; Inoue T; Nakano A; Ueda T
    Plant Cell; 2016 Jun; 28(6):1490-503. PubMed ID: 27288222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain.
    Nielsen E; Christoforidis S; Uttenweiler-Joseph S; Miaczynska M; Dewitte F; Wilm M; Hoflack B; Zerial M
    J Cell Biol; 2000 Oct; 151(3):601-12. PubMed ID: 11062261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of three rab5-like GTPases, Ypt51p, Ypt52p, and Ypt53p, in the endocytic and vacuolar protein sorting pathways of yeast.
    Singer-Krüger B; Stenmark H; Düsterhöft A; Philippsen P; Yoo JS; Gallwitz D; Zerial M
    J Cell Biol; 1994 Apr; 125(2):283-98. PubMed ID: 8163546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The fungal RABOME: RAB GTPases acting in the endocytic and exocytic pathways of Aspergillus nidulans (with excursions to other filamentous fungi).
    Pinar M; Peñalva MA
    Mol Microbiol; 2021 Jul; 116(1):53-70. PubMed ID: 33724562
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology.
    Kuronita T; Eskelinen EL; Fujita H; Saftig P; Himeno M; Tanaka Y
    J Cell Sci; 2002 Nov; 115(Pt 21):4117-31. PubMed ID: 12356916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A fresh look at the function of Rabaptin5 on endosomes.
    Kälin S; Buser DP; Spiess M
    Small GTPases; 2016; 7(1):34-7. PubMed ID: 26940354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effectors of GTPase Rab5 in endocytosis and signal transduction].
    Olchowik M; Miaczyńska M
    Postepy Biochem; 2009; 55(2):171-80. PubMed ID: 19824473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ordering of compartments in the yeast endocytic pathway.
    Prescianotto-Baschong C; Riezman H
    Traffic; 2002 Jan; 3(1):37-49. PubMed ID: 11872141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping of Vps21 and HOPS binding sites in Vps8 and effect of binding site mutants on endocytic trafficking.
    Pawelec A; Arsić J; Kölling R
    Eukaryot Cell; 2010 Apr; 9(4):602-10. PubMed ID: 20173035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a Rab GTPase-activating protein cascade that controls recycling of the Rab5 GTPase Vps21 from the vacuole.
    Rana M; Lachmann J; Ungermann C
    Mol Biol Cell; 2015 Jul; 26(13):2535-49. PubMed ID: 25971802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retrograde transport of Akt by a neuronal Rab5-APPL1 endosome.
    Goto-Silva L; McShane MP; Salinas S; Kalaidzidis Y; Schiavo G; Zerial M
    Sci Rep; 2019 Feb; 9(1):2433. PubMed ID: 30792402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of the endosomal CORVET tethering complex.
    Shvarev D; König C; Susan N; Langemeyer L; Walter S; Perz A; Fröhlich F; Ungermann C; Moeller A
    Nat Commun; 2024 Jun; 15(1):5227. PubMed ID: 38898033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast.
    Burd CG; Peterson M; Cowles CR; Emr SD
    Mol Biol Cell; 1997 Jun; 8(6):1089-104. PubMed ID: 9201718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo.
    Zeigerer A; Gilleron J; Bogorad RL; Marsico G; Nonaka H; Seifert S; Epstein-Barash H; Kuchimanchi S; Peng CG; Ruda VM; Del Conte-Zerial P; Hengstler JG; Kalaidzidis Y; Koteliansky V; Zerial M
    Nature; 2012 May; 485(7399):465-70. PubMed ID: 22622570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The HOPS/class C Vps complex tethers membranes by binding to one Rab GTPase in each apposed membrane.
    Ho R; Stroupe C
    Mol Biol Cell; 2015 Jul; 26(14):2655-63. PubMed ID: 25995379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane dynamics and fusion at late endosomes and vacuoles--Rab regulation, multisubunit tethering complexes and SNAREs.
    Epp N; Rethmeier R; Krämer L; Ungermann C
    Eur J Cell Biol; 2011 Sep; 90(9):779-85. PubMed ID: 21683469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease.
    Pal A; Severin F; Lommer B; Shevchenko A; Zerial M
    J Cell Biol; 2006 Feb; 172(4):605-18. PubMed ID: 16476778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rab5-dependent trafficking of the m4 muscarinic acetylcholine receptor to the plasma membrane, early endosomes, and multivesicular bodies.
    Volpicelli LA; Lah JJ; Levey AI
    J Biol Chem; 2001 Dec; 276(50):47590-8. PubMed ID: 11590149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TBC-2 regulates RAB-5/RAB-7-mediated endosomal trafficking in Caenorhabditis elegans.
    Chotard L; Mishra AK; Sylvain MA; Tuck S; Lambright DG; Rocheleau CE
    Mol Biol Cell; 2010 Jul; 21(13):2285-96. PubMed ID: 20462958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Receptor and membrane recycling can occur with unaltered efficiency despite dramatic Rab5(q79l)-induced changes in endosome geometry.
    Ceresa BP; Lotscher M; Schmid SL
    J Biol Chem; 2001 Mar; 276(13):9649-54. PubMed ID: 11136733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.