These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20535618)

  • 1. Fuel oxidation in relation to walking speed: influence of gradient and external load.
    Entin PL; Gest C; Trancik S; Richard Coast J
    Eur J Appl Physiol; 2010 Oct; 110(3):515-21. PubMed ID: 20535618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuel oxidation during human walking.
    Willis WT; Ganley KJ; Herman RM
    Metabolism; 2005 Jun; 54(6):793-9. PubMed ID: 15931617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking.
    Dal U; Erdogan T; Resitoglu B; Beydagi H
    Gait Posture; 2010 Mar; 31(3):366-9. PubMed ID: 20129785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Determinants of the Preferred Walking Speed in Individuals with Obesity.
    Fernández Menéndez A; Saubade M; Hans D; Millet GP; Malatesta D
    Obes Facts; 2019; 12(5):543-553. PubMed ID: 31505515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbohydrate and fat oxidation in persons with lower limb amputation during walking with different speeds.
    Gjovaag T; Mirtaheri P; Starholm IM
    Prosthet Orthot Int; 2018 Jun; 42(3):304-310. PubMed ID: 29119861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of substrate oxidation during walking and running in normal-weight and overweight/obese men.
    Balcı SS
    Obes Facts; 2012; 5(3):327-38. PubMed ID: 22722096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bodyweight support alters the relationship between preferred walking speed and cost of transport.
    Kraft JC; Augustine JA; Fiddler RE; Lewis C; Dames KD
    Hum Mov Sci; 2023 Apr; 88():103068. PubMed ID: 36806975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuel oxidation at the walk-to-run-transition in humans.
    Ganley KJ; Stock A; Herman RM; Santello M; Willis WT
    Metabolism; 2011 May; 60(5):609-16. PubMed ID: 20708204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between relative aerobic load, energy cost, and speed of walking in individuals post-stroke.
    Blokland I; Gravesteijn A; Busse M; Groot F; van Bennekom C; van Dieen J; de Koning J; Houdijk H
    Gait Posture; 2021 Sep; 89():193-199. PubMed ID: 34332288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of load and speed on the energetic cost of human walking.
    Bastien GJ; Willems PA; Schepens B; Heglund NC
    Eur J Appl Physiol; 2005 May; 94(1-2):76-83. PubMed ID: 15650888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in energy consumption and plantar pressure distribution during walking in young adults with patellofemoral pain syndrome.
    Dag F; Dal U; Altinkaya Z; Erdogan AT; Ozdemir E; Yildirim DD; Colak M
    Acta Orthop Traumatol Turc; 2019 Jan; 53(1):50-55. PubMed ID: 30482589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gender-based differences in substrate use during exercise at a self-selected pace.
    Dasilva SG; Guidetti L; Buzzachera CF; Elsangedy HM; Krinski K; De Campos W; Goss FL; Baldari C
    J Strength Cond Res; 2011 Sep; 25(9):2544-51. PubMed ID: 21747295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Walking economy is predictably determined by speed, grade, and gravitational load.
    Ludlow LW; Weyand PG
    J Appl Physiol (1985); 2017 Nov; 123(5):1288-1302. PubMed ID: 28729390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptations to changing speed, load, and gradient in human walking: cost of transport, optimal speed, and pendulum.
    Gomeñuka NA; Bona RL; da Rosa RG; Peyré-Tartaruga LA
    Scand J Med Sci Sports; 2014 Jun; 24(3):e165-73. PubMed ID: 24102934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy expenditure, recovery oxygen consumption, and substrate oxidation during and after body weight resistance exercise with slow movement compared to treadmill walking.
    Nakagata T; Yamada Y; Naito H
    Physiol Int; 2018 Dec; 105(4):371-385. PubMed ID: 30587026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of load carriage, load position, and walking speed on energy cost of walking.
    Abe D; Yanagawa K; Niihata S
    Appl Ergon; 2004 Jul; 35(4):329-35. PubMed ID: 15159197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative effect of a 1 h session of electrical muscle stimulation and walking activity on energy expenditure and substrate oxidation in obese subjects.
    Grosset JF; Crowe L; De Vito G; O'Shea D; Caulfield B
    Appl Physiol Nutr Metab; 2013 Jan; 38(1):57-65. PubMed ID: 23368829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetic optimization during over-ground walking in people with and without Down syndrome.
    Agiovlasitis S; Motl RW; Ranadive SM; Fahs CA; Yan H; Echols GH; Rossow L; Fernhall B
    Gait Posture; 2011 Apr; 33(4):630-4. PubMed ID: 21396824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of obesity and sex on the energetic cost and preferred speed of walking.
    Browning RC; Baker EA; Herron JA; Kram R
    J Appl Physiol (1985); 2006 Feb; 100(2):390-8. PubMed ID: 16210434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in substrate utilization rates during 40 min of walking within the Fatmax range.
    Özdemir Ç; Özgünen K; Günaştı Ö; Eryılmaz SK; Kılcı A; Kurdak SS
    Physiol Int; 2019 Sep; 106(3):294-304. PubMed ID: 31560234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.