These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20535619)

  • 1. Hydrogen sulfide degradation characteristics of Bordetella sp. Sulf-8 in a biotrickling filter.
    Nisola GM; Tuuguu E; Farnazo DM; Han M; Kim Y; Cho E; Chung WJ
    Bioprocess Biosyst Eng; 2010 Nov; 33(9):1131-8. PubMed ID: 20535619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11.
    Lee EY; Lee NY; Cho KS; Ryu HW
    J Biosci Bioeng; 2006 Apr; 101(4):309-14. PubMed ID: 16716938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of H2S using a horizontal biotrickling filter based on biological activated carbon: reactor setup and performance evaluation.
    Duan H; Koe LC; Yan R
    Appl Microbiol Biotechnol; 2005 Apr; 67(1):143-9. PubMed ID: 15538552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam.
    Ramírez M; Gómez JM; Aroca G; Cantero D
    Bioresour Technol; 2009 Nov; 100(21):4989-95. PubMed ID: 19501506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-treatment of hydrogen sulfide and methanol in a single-stage biotrickling filter under acidic conditions.
    Jin Y; Veiga MC; Kennes C
    Chemosphere; 2007 Jun; 68(6):1186-93. PubMed ID: 17349668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pH, CO2, and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter.
    Jin Y; Veiga MC; Kennes C
    Biotechnol Bioeng; 2005 Nov; 92(4):462-71. PubMed ID: 16025537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial community structures in a horizontal biotrickling filter degrading H2S and NH3.
    Jiang X; Tay JH
    Bioresour Technol; 2010 Mar; 101(6):1635-41. PubMed ID: 19837581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operational aspects of the desulfurization process of energy gases mimics in biotrickling filters.
    Fortuny M; Gamisans X; Deshusses MA; Lafuente J; Casas C; Gabriel D
    Water Res; 2011 Nov; 45(17):5665-74. PubMed ID: 21890165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological sweetening of energy gases mimics in biotrickling filters.
    Fortuny M; Baeza JA; Gamisans X; Casas C; Lafuente J; Deshusses MA; Gabriel D
    Chemosphere; 2008 Mar; 71(1):10-7. PubMed ID: 18096204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operational and microbiological aspects of a bioaugmented two-stage biotrickling filter removing hydrogen sulfide and dimethyl sulfide.
    Sercu B; Núñez D; Van Langenhove H; Aroca G; Verstraete W
    Biotechnol Bioeng; 2005 Apr; 90(2):259-69. PubMed ID: 15739171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of hydrogen sulfide by a laboratory-scale immobilized Pseudomonas putida CH11 biofilter.
    Chung YC; Huang C; Tseng CP
    Biotechnol Prog; 1996; 12(6):773-8. PubMed ID: 8983205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a novel biocatalyst system for sulfide oxidation.
    McComas C; Sublette KL; Jenneman G; Bala G
    Biotechnol Prog; 2001; 17(3):439-46. PubMed ID: 11386863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empirical modelling and dual-performance optimisation of a hydrogen sulphide removal process for biogas treatment.
    Soreanu G; Falletta P; Béland M; Edmonson K; Ventresca B; Seto P
    Bioresour Technol; 2010 Dec; 101(23):9387-90. PubMed ID: 20685113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor.
    van den Bosch PL; van Beusekom OC; Buisman CJ; Janssen AJ
    Biotechnol Bioeng; 2007 Aug; 97(5):1053-63. PubMed ID: 17216660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of the removal of mono-chlorobenzene vapour from waste gases using a trickle bed air biofilter.
    Mathur AK; Sundaramurthy J; Balomajumder C
    J Hazard Mater; 2006 Oct; 137(3):1560-8. PubMed ID: 16757115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of biologically produced sulfur on gas absorption in a biotechnological hydrogen sulfide removal process.
    Kleinjan WE; Lammers JN; de Keizer A; Janssen AJ
    Biotechnol Bioeng; 2006 Jul; 94(4):633-44. PubMed ID: 16514676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of high concentration of NH3 and coexistent H2S by biological activated carbon (BAC) biotrickling filter.
    Chung YC; Lin YY; Tseng CP
    Bioresour Technol; 2005 Nov; 96(16):1812-20. PubMed ID: 16051088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on the mechanism of H(2)S removal by biological activated carbon in a horizontal biotrickling filter.
    Duan H; Yan R; Koe LC
    Appl Microbiol Biotechnol; 2005 Dec; 69(3):350-7. PubMed ID: 16028045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermophilic biofiltration of H2S and isolation of a thermophilic and heterotrophic H2S-degrading bacterium, Bacillus sp. TSO3.
    Ryu HW; Yoo SK; Choi JM; Cho KS; Cha DK
    J Hazard Mater; 2009 Aug; 168(1):501-6. PubMed ID: 19285796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofiltration of hydrogen sulfide by Sulfolobus metallicus at high temperatures.
    Morales M; Silva J; Morales P; Gentina JC; Aroca G
    Water Sci Technol; 2012; 66(9):1958-61. PubMed ID: 22925869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.