These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 20536132)

  • 21. Expanding the substrate scope of enzymes: combining mutations obtained by CASTing.
    Reetz MT; Carballeira JD; Peyralans J; Höbenreich H; Maichele A; Vogel A
    Chemistry; 2006 Aug; 12(23):6031-8. PubMed ID: 16789057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method.
    Reetz MT; Soni P; Fernández L; Gumulya Y; Carballeira JD
    Chem Commun (Camb); 2010 Dec; 46(45):8657-8. PubMed ID: 20957255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directed evolution of enzymes for applied biocatalysis.
    Turner NJ
    Trends Biotechnol; 2003 Nov; 21(11):474-8. PubMed ID: 14573359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Manipulating the stereoselectivity of limonene epoxide hydrolase by directed evolution based on iterative saturation mutagenesis.
    Zheng H; Reetz MT
    J Am Chem Soc; 2010 Nov; 132(44):15744-51. PubMed ID: 20958062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning from directed evolution: Further lessons from theoretical investigations into cooperative mutations in lipase enantioselectivity.
    Reetz MT; Puls M; Carballeira JD; Vogel A; Jaeger KE; Eggert T; Thiel W; Bocola M; Otte N
    Chembiochem; 2007 Jan; 8(1):106-12. PubMed ID: 17133645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring the thermostable properties of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by a combinatorial directed evolution strategy.
    Wu Z; Deng W; Tong Y; Liao Q; Xin D; Yu H; Feng J; Tang L
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3201-3211. PubMed ID: 28074221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directed evolution of lipases and esterases.
    Schmidt M; Baumann M; Henke E; Konarzycka-Bessler M; Bornscheuer UT
    Methods Enzymol; 2004; 388():199-207. PubMed ID: 15289073
    [No Abstract]   [Full Text] [Related]  

  • 28. Mutations towards enantioselectivity adversely affect secretion of Pseudomonas aeruginosa lipase.
    Hausmann S; Wilhelm S; Jaeger KE; Rosenau F
    FEMS Microbiol Lett; 2008 May; 282(1):65-72. PubMed ID: 18355276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications.
    Reetz MT
    Proc Natl Acad Sci U S A; 2004 Apr; 101(16):5716-22. PubMed ID: 15079053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha-substituted esters.
    Engström K; Nyhlén J; Sandström AG; Bäckvall JE
    J Am Chem Soc; 2010 May; 132(20):7038-42. PubMed ID: 20450151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A genetic selection system for evolving enantioselectivity of enzymes.
    Reetz MT; Höbenreich H; Soni P; Fernández L
    Chem Commun (Camb); 2008 Nov; (43):5502-4. PubMed ID: 18997932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site.
    Bordes F; Cambon E; Dossat-Létisse V; André I; Croux C; Nicaud JM; Marty A
    Chembiochem; 2009 Jul; 10(10):1705-13. PubMed ID: 19504508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Directed evolution of hybrid enzymes: Evolving enantioselectivity of an achiral Rh-complex anchored to a protein.
    Reetz MT; Peyralans JJ; Maichele A; Fu Y; Maywald M
    Chem Commun (Camb); 2006 Nov; (41):4318-20. PubMed ID: 17047853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Laboratory evolution of enantiocomplementary Candida antarctica lipase B mutants with broad substrate scope.
    Wu Q; Soni P; Reetz MT
    J Am Chem Soc; 2013 Feb; 135(5):1872-81. PubMed ID: 23301759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New Concepts for Increasing the Efficiency in Directed Evolution of Stereoselective Enzymes.
    Sun Z; Wikmark Y; Bäckvall JE; Reetz MT
    Chemistry; 2016 Apr; 22(15):5046-54. PubMed ID: 26914401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzyme engineering for enantioselectivity: from trial-and-error to rational design?
    Otten LG; Hollmann F; Arends IW
    Trends Biotechnol; 2010 Jan; 28(1):46-54. PubMed ID: 19913316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity.
    Fujii R; Nakagawa Y; Hiratake J; Sogabe A; Sakata K
    Protein Eng Des Sel; 2005 Feb; 18(2):93-101. PubMed ID: 15788423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular evolution of a defined DNA sequence with accumulation of mutations in a single round by a dual approach to random chemical mutagenesis (DuARCheM).
    Mohan U; Banerjee UC
    Chembiochem; 2008 Sep; 9(14):2238-43. PubMed ID: 18756549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies.
    Paramesvaran J; Hibbert EG; Russell AJ; Dalby PA
    Protein Eng Des Sel; 2009 Jul; 22(7):401-11. PubMed ID: 19502357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution.
    Acevedo-Rocha CG; Hoebenreich S; Reetz MT
    Methods Mol Biol; 2014; 1179():103-28. PubMed ID: 25055773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.