These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20536230)

  • 1. Thermodynamic analysis of contamination by alloying elements in aluminum recycling.
    Nakajima K; Takeda O; Miki T; Matsubae K; Nakamura S; Nagasaka T
    Environ Sci Technol; 2010 Jul; 44(14):5594-600. PubMed ID: 20536230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic analysis for the controllability of elements in the recycling process of metals.
    Nakajima K; Takeda O; Miki T; Matsubae K; Nagasaka T
    Environ Sci Technol; 2011 Jun; 45(11):4929-36. PubMed ID: 21561121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic Analysis for the Refining Ability of Salt Flux for Aluminum Recycling.
    Hiraki T; Miki T; Nakajima K; Matsubae K; Nakamura S; Nagasaka T
    Materials (Basel); 2014 Jul; 7(8):5543-5553. PubMed ID: 28788144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic criteria for the removal of impurities from end-of-life magnesium alloys by evaporation and flux treatment.
    Hiraki T; Takeda O; Nakajima K; Matsubae K; Nakamura S; Nagasaka T
    Sci Technol Adv Mater; 2011 Jun; 12(3):035003. PubMed ID: 27877407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.
    Rabah MA
    Waste Manag; 2004; 24(2):119-26. PubMed ID: 14761750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of aluminium-magnesium alloys and some valuable salts from used beverage cans.
    Rabah MA
    Waste Manag; 2003; 23(2):173-82. PubMed ID: 12623092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].
    Ohno H
    Shika Rikogaku Zasshi; 1976 Nov; 17(40):322-35. PubMed ID: 1069825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles studies on alloying and simplified thermodynamic aqueous chemical stability of calcium-, zinc-, aluminum-, yttrium- and iron-doped magnesium alloys.
    Velikokhatnyi OI; Kumta PN
    Acta Biomater; 2010 May; 6(5):1698-704. PubMed ID: 19683600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling of aluminium scrap for secondary Al-Si alloys.
    Velasco E; Nino J
    Waste Manag Res; 2011 Jul; 29(7):686-93. PubMed ID: 20837560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid LCA of a design for disassembly technology: active disassembling fasteners of hydrogen storage alloys for home appliances.
    Nakamura S; Yamasue E
    Environ Sci Technol; 2010 Jun; 44(12):4402-8. PubMed ID: 20476783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aluminium recycling and environmental issues of salt slag treatment.
    Xiao Y; Reuter MA; Boin U
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(10):1861-75. PubMed ID: 16194908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.
    Løvik AN; Modaresi R; Müller DB
    Environ Sci Technol; 2014 Apr; 48(8):4257-65. PubMed ID: 24655476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic analysis to assess the environmental impact of end-of-life recovery processing for nanotechnology products.
    Olapiriyakul S; Caudill RJ
    Environ Sci Technol; 2009 Nov; 43(21):8140-6. PubMed ID: 19924935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Management of MSW in Spain and recovery of packaging steel scrap.
    Tayibi H; Peña C; López FA; López-Delgado A
    Waste Manag; 2007; 27(11):1655-65. PubMed ID: 17161595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of scrap iron metal value using biogenerated ferric iron.
    Ballor NR; Nesbitt CC; Lueking DR
    Biotechnol Bioeng; 2006 Apr; 93(6):1089-94. PubMed ID: 16440341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching of aluminum and iron from boiler slag generated from a typical Chinese Steel Plant.
    Li J; Gan J; Li X
    J Hazard Mater; 2009 Jul; 166(2-3):1096-101. PubMed ID: 19157693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of shredded television scrap and implications for materials recovery.
    Cui J; Forssberg E
    Waste Manag; 2007; 27(3):415-24. PubMed ID: 16624540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction.
    Wang KS; Lin KL; Lee CH
    J Hazard Mater; 2009 Feb; 162(1):338-43. PubMed ID: 18573610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Determination of impurity elements in alloy aluminum by ICP-AES].
    Zhao AD; Chen HL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Oct; 21(5):647-8. PubMed ID: 12945320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.