These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 20536249)

  • 1. Nanodomain formation in lipid membranes probed by time-resolved fluorescence.
    Siu H; Duhamel J; Sasaki DY; Pincus JL
    Langmuir; 2010 Jul; 26(13):10985-94. PubMed ID: 20536249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion of alpha-tocopherol in membrane models: probing the kinetics of vitamin E antioxidant action by fluorescence in real time.
    Gramlich G; Zhang J; Nau WM
    J Am Chem Soc; 2004 May; 126(17):5482-92. PubMed ID: 15113220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysozyme effect on structural state of model membranes as revealed by pyrene excimerization studies.
    Ioffe V; Gorbenko GP
    Biophys Chem; 2005 Apr; 114(2-3):199-204. PubMed ID: 15829353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partitioning of dual-lipidated peptides into membrane microdomains: lipid sorting vs peptide aggregation.
    Janosch S; Nicolini C; Ludolph B; Peters C; Völkert M; Hazlet TL; Gratton E; Waldmann H; Winter R
    J Am Chem Soc; 2004 Jun; 126(24):7496-503. PubMed ID: 15198596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism of lateral diffusion of py(10)-PC and free pyrene in fluid DMPC bilayers.
    Martins J; Melo E
    Biophys J; 2001 Feb; 80(2):832-40. PubMed ID: 11159450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Use of excimerization of pyrene for assessing lipid microviscosity in biological membranes].
    Samoĭlenko SG; Kaler GV; Konev SV
    Biofizika; 1999; 44(3):455-60. PubMed ID: 10439860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of side-chain length on the side-chain dynamics of alpha-helical poly(L-glutamic acid) as probed by a fluorescence blob model.
    Ingratta M; Duhamel J
    J Phys Chem B; 2008 Jul; 112(30):9209-18. PubMed ID: 18610962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internally catalyzed separation of adhered lipid membranes.
    Menger FM; Seredyuk VA
    J Am Chem Soc; 2003 Oct; 125(39):11800-1. PubMed ID: 14505385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A versatile method for determining the molar ligand-membrane partition coefficient.
    Parry MJ; Jutila A; Kinnunen PK; Alakoskela JM
    J Fluoresc; 2007 Jan; 17(1):97-103. PubMed ID: 17160728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid membrane reorganization induced by chemical recognition.
    Last JA; Waggoner TA; Sasaki DY
    Biophys J; 2001 Nov; 81(5):2737-42. PubMed ID: 11606286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.
    Reuter M; Schwieger C; Meister A; Karlsson G; Blume A
    Biophys Chem; 2009 Sep; 144(1-2):27-37. PubMed ID: 19560854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of cetylpyridinium chloride with giant lipid vesicles.
    Arrigler V; Kogej K; Majhenc J; Svetina S
    Langmuir; 2005 Aug; 21(17):7653-61. PubMed ID: 16089366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the sterol superlattice in the partitioning of the antifungal drug nystatin into lipid membranes.
    Wang MM; Sugar IP; Chong PL
    Biochemistry; 1998 Aug; 37(34):11797-805. PubMed ID: 9718302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcein permeation across phosphatidylcholine bilayer membrane: effects of membrane fluidity, liposome size, and immobilization.
    Shimanouchi T; Ishii H; Yoshimoto N; Umakoshi H; Kuboi R
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):156-60. PubMed ID: 19560324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of temperature on polarity of an annular and bilayer synaptic membrane lipid].
    Samoĭlenko SG; Okun' IM; Aksentsev SL; Konev SV
    Biofizika; 1992; 37(2):290-4. PubMed ID: 7578319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fluorometric analysis of liquid-crystalline to inverted hexagonal phase transition induced by diacylglycerol in liposomes].
    Naganuma M
    Hokkaido Igaku Zasshi; 1994 Jan; 69(1):65-71. PubMed ID: 8119659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the mechanism of antimicrobial conjugated polyelectrolytes: lipid headgroup charge and membrane fluidity effects.
    Ding L; Chi EY; Schanze KS; Lopez GP; Whitten DG
    Langmuir; 2010 Apr; 26(8):5544-50. PubMed ID: 20000327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of proteolysis on the state of lipid phase in rat brain synaptosomal membranes.
    Aksentsev SL; Samoilenko SG; Kaler GV; Konev SV
    Arch Biochem Biophys; 1995 Jan; 316(1):47-51. PubMed ID: 7840651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational flexibility of domain III of annexin V at membrane/water interfaces.
    Sopkova J; Vincent M; Takahashi M; Lewit-Bentley A; Gallay J
    Biochemistry; 1999 Apr; 38(17):5447-58. PubMed ID: 10220332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inequivalence of fluorescent choline and ethanolamine phospholipids in the erythrocyte membrane: fluorescence lifetime determination in the frequency and time domain.
    Prenner E; Sommer A; Kungl A; Stütz H; Friedl H; Hermetter A
    Arch Biochem Biophys; 1993 Sep; 305(2):473-6. PubMed ID: 8373186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.